People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wang, Tian Yu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Failure Analysis of Multi-Layered Thick-Walled Composite Pipes Subjected to Torsion Loading
Abstract
<jats:p>In the current study multi-layered thick-walled fibre reinforced composite pipes under torsion loading are considered. To analyse the stress-strain distribution in the pipe the Finite Element model (ABAQUS) has been developed. Using the model the radial, hoop, axial and shear stresses have been calculated for different lay-ups of the fibre reinforced pipes, and modified Tsai-Hill failure coefficients have been computed. The validation of the model was done by comparing the results available in the literature and the semi-analytical three-dimensional elasticity solution. The dependence of the failure coefficient on winding angles and layers’ thickness was investigated and analyzed, and the appropriate design considerations have been suggested for four-layer pipes.</jats:p>