Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Judi, Hawraa Kareem

  • Google
  • 1
  • 5
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021The Role of Formic Acid as Secondary Dopant and Solvent for Poly(O-Toluidine) Intrinsically Doped with Camphor Sulfonic Acid10citations

Places of action

Chart of shared publication
Hussein, Hussein M.
1 / 1 shared
Ziadan, Kareema M.
1 / 2 shared
Al-Kabbi, Alaa S.
1 / 1 shared
Abdulzahr, Dalael Saad
1 / 1 shared
Mohammed, Kahtan A.
1 / 10 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Hussein, Hussein M.
  • Ziadan, Kareema M.
  • Al-Kabbi, Alaa S.
  • Abdulzahr, Dalael Saad
  • Mohammed, Kahtan A.
OrganizationsLocationPeople

article

The Role of Formic Acid as Secondary Dopant and Solvent for Poly(O-Toluidine) Intrinsically Doped with Camphor Sulfonic Acid

  • Judi, Hawraa Kareem
  • Hussein, Hussein M.
  • Ziadan, Kareema M.
  • Al-Kabbi, Alaa S.
  • Abdulzahr, Dalael Saad
  • Mohammed, Kahtan A.
Abstract

<jats:p>The role of formic acid as Secondary Dopant for Poly (O-toluidine) Intrinsically Doped with Camphor Sulfonic-Acid (POT-CSA) nanoparticles were prepared by chemical polymerization had been studied. Spin coating and casting method have been used to deposit good adhesion and uniform thin films of (POT-CSA) on a glass substrates at room temperature. the properties of (POT-CSA) nanoparticles which examined by FTIR, SEM, AFM, XRD, I-V characteristics and UV-VIS. FTIR studies show the several bending and stretching modes of POT. XRD examination demonstrated that NPS. has a semi-crystalline pattern . The synthesized film well covered by the nanoparticles over the entire substrate surface, exhibits uniform, porous, and spherical granular surface morphology, A narrow size distribution is observed and the average size of particles about 80 nm. The band gap (Eg) has been determined which is equal to 3.1 ev. The room temperature conductivity of POT-CSA was 3 * 10-1 S.cm-1,which increases with increasing temperature. Electrical conductivity enhances up to three order after the secondary doping process. Keywords: POT-Chemical polymerization-Conducting polymer-SEM-AFM</jats:p>

Topics
  • nanoparticle
  • porous
  • impedance spectroscopy
  • surface
  • polymer
  • scanning electron microscopy
  • x-ray diffraction
  • thin film
  • atomic force microscopy
  • glass
  • glass
  • casting
  • electrical conductivity
  • spin coating