People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mohammed, Kahtan A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Biosynthesis of Au–CuO–ZnO Nanocomposite using leaf extract and activity as anti- bacterial, anti-cancer, degradation of CB dyecitations
- 2023Studying the Optical and Structural Properties and Anticancer Activity of New PVA–Fe<sub>2</sub>O<sub>3</sub>:Cu Nanocomposite Materialscitations
- 2023Mechanical properties of carbon fiber reinforced with carbon nanotubes and graphene filled epoxy composites: experimental and numerical investigationscitations
- 2023Designing PMMA–PVA–TiO<sub>2</sub> as New Hybrid Nanocomposite for Anticancer Applicationscitations
- 2023Recent Advances on Biocompatible coating on Magnesium alloys by Micro Arc Oxidation Techniquecitations
- 2022Experimental Investigation to Analyze the Mechanical and Microstructure Properties of 310 SS Performed by TIG Weldingcitations
- 2022Development of Carbon Nanotube (CNT)-Reinforced Mg Alloys: Fabrication Routes and Mechanical Propertiescitations
- 2022Synthesis and Characterization of PVA–Fe<sub>2</sub>O<sub>3</sub>–CuO Hybrid Structure for Biomedical Applicationcitations
- 2022Optical Properties of PbS/CdZnS Double Layers Nanocrystalline Thin Films for Opto-Electronic Applicationscitations
- 2021The Role of Formic Acid as Secondary Dopant and Solvent for Poly(O-Toluidine) Intrinsically Doped with Camphor Sulfonic Acidcitations
Places of action
Organizations | Location | People |
---|
article
The Role of Formic Acid as Secondary Dopant and Solvent for Poly(O-Toluidine) Intrinsically Doped with Camphor Sulfonic Acid
Abstract
<jats:p>The role of formic acid as Secondary Dopant for Poly (O-toluidine) Intrinsically Doped with Camphor Sulfonic-Acid (POT-CSA) nanoparticles were prepared by chemical polymerization had been studied. Spin coating and casting method have been used to deposit good adhesion and uniform thin films of (POT-CSA) on a glass substrates at room temperature. the properties of (POT-CSA) nanoparticles which examined by FTIR, SEM, AFM, XRD, I-V characteristics and UV-VIS. FTIR studies show the several bending and stretching modes of POT. XRD examination demonstrated that NPS. has a semi-crystalline pattern . The synthesized film well covered by the nanoparticles over the entire substrate surface, exhibits uniform, porous, and spherical granular surface morphology, A narrow size distribution is observed and the average size of particles about 80 nm. The band gap (Eg) has been determined which is equal to 3.1 ev. The room temperature conductivity of POT-CSA was 3 * 10-1 S.cm-1,which increases with increasing temperature. Electrical conductivity enhances up to three order after the secondary doping process. Keywords: POT-Chemical polymerization-Conducting polymer-SEM-AFM</jats:p>