Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Verna, Elisa

  • Google
  • 5
  • 8
  • 70

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021Cold Spraying of IN 718-Ni Composite Coatings: Microstructure Characterization and Tribological Performance1citations
  • 2021Cold Spraying of IN 718-Ni Composite Coatings: Microstructure Characterization and Tribological Performance1citations
  • 2021The effect of heat treatment and impact angle on the erosion behavior of nickel-tungsten carbide cold spray coating using response surface methodology13citations
  • 2020Modeling of Erosion Response of Cold-Sprayed In718-Ni Composite Coating Using Full Factorial Design21citations
  • 2020Defect Probability Estimation for Hardness-Optimised Parts by Selective Laser Melting34citations

Places of action

Chart of shared publication
Galetto, Maurizio
2 / 2 shared
Lupoi, Rocco
2 / 20 shared
Bemborad, Edoardo
1 / 1 shared
Biagi, Roberto
1 / 7 shared
Yin, Shuo
2 / 4 shared
Kazasidis, Marios
1 / 1 shared
Maculotti, Giacomo
1 / 1 shared
Genta, Gianfranco
1 / 3 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Galetto, Maurizio
  • Lupoi, Rocco
  • Bemborad, Edoardo
  • Biagi, Roberto
  • Yin, Shuo
  • Kazasidis, Marios
  • Maculotti, Giacomo
  • Genta, Gianfranco
OrganizationsLocationPeople

document

Cold Spraying of IN 718-Ni Composite Coatings: Microstructure Characterization and Tribological Performance

  • Verna, Elisa
Abstract

INCONEL 718 superalloy (IN 718) is frequently used in highly aggressive environments, such as aerospace and gas turbine engines, where excellent mechanical properties, creep-, fatigue- and oxidation-resistance performance at high and cryogenic temperatures are required. Recent studies have successfully cold sprayed IN 718, showing great potential mainly in maintenance and repairing fields. However, due to the low plastic deformation, the manufacture of IN 718 cold sprayed coatings often requires the use of expensive propulsive gases or high working parameters to enhance deposition efficiency, with a significant increase in production costs. This paper investigates for the first time the addition of Ni to IN 718 powders in order to increase plastic deformation and interparticle bonding strength. Four composite coatings were deposited via a high-pressure cold spray process using nitrogen as propulsive gas, considering different IN 718 mass fractions in the feedstock: C1 (0 wt%), C2 (25 wt%), C3 (50 wt%), C4 (75 wt%). The coatings are examined in terms of microstructural characteristics and tribological performance. The addition of IN 718 particles significantly improves the mechanical properties of the coatings, despite an increase in porosity, which however does not exceed 1%. The tribological performance of the four coatings is investigated using a pin-on-disk test, demonstrating that the coating wear resistance behaviour improved as the IN 718 content increased. Analysis of the wear mechanism shows that C4 coating has a different wear behaviour than the other coatings, thus achieving the best wear-resistance performance.

Topics
  • Deposition
  • impedance spectroscopy
  • polymer
  • wear resistance
  • Nitrogen
  • strength
  • fatigue
  • composite
  • porosity
  • creep
  • superalloy