Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yamamoto, Jimpei

  • Google
  • 1
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Comprehensive Phase Field Study on Directionally-Solidified MoSi<sub>2</sub>/Mo<sub>5</sub>Si<sub>3</sub> Eutectic Alloy2citations

Places of action

Chart of shared publication
Inui, Haruyuki
1 / 7 shared
Koizumi, Yuichiro
1 / 4 shared
Kishida, Kyosuke
1 / 7 shared
Yuge, Koretaka
1 / 2 shared
Zhu, Chuan Qi
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Inui, Haruyuki
  • Koizumi, Yuichiro
  • Kishida, Kyosuke
  • Yuge, Koretaka
  • Zhu, Chuan Qi
OrganizationsLocationPeople

article

Comprehensive Phase Field Study on Directionally-Solidified MoSi<sub>2</sub>/Mo<sub>5</sub>Si<sub>3</sub> Eutectic Alloy

  • Inui, Haruyuki
  • Koizumi, Yuichiro
  • Kishida, Kyosuke
  • Yuge, Koretaka
  • Zhu, Chuan Qi
  • Yamamoto, Jimpei
Abstract

<jats:p>MoSi<jats:sub>2</jats:sub>/Mo<jats:sub>5</jats:sub>Si<jats:sub>3</jats:sub> eutectic composites have been considered as one of the promising candidates for ultra-high temperature structural applications owing to their high melting point, good oxidation resistance, and low mass density. Their mechanical properties can be improved by controlling the eutectic structure (i.e. script lamellar structure) in directional solidification. It is important to elucidate the dominant factors underlining the unique pattern formation. We conducted a comprehensive phase field study to examine the influence of various factors on the MoSi<jats:sub>2</jats:sub>/Mo<jats:sub>5</jats:sub>Si<jats:sub>3</jats:sub> eutectic microstructure with complicated morphology. First, the inclined lamellae have been attributed to the minimization of elastic strain energy due to the lattice mismatch between MoSi<jats:sub>2 </jats:sub>and Mo<jats:sub>5</jats:sub>Si<jats:sub>3</jats:sub>, which are partially relaxed by forming semi-coherent phase boundaries. Second, the maze-like pattern on the horizontal cross-section appeared when a two-fold anisotropy of interfacial energy is superimposed on the MoSi<jats:sub>2</jats:sub>/Mo<jats:sub>5</jats:sub>Si<jats:sub>3</jats:sub> boundary. Third, the random and intersected lamellae have been obtained by assuming the instability of the solid-liquid interface and introducing successive nucleation of Mo<jats:sub>5</jats:sub>Si<jats:sub>3</jats:sub> phase. These findings provide guidance for manipulating the eutectic structure and act as footsteps for further theoretical investigation.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • phase
  • composite
  • forming
  • random
  • interfacial
  • lamellae
  • directional solidification
  • interfacial energy
  • eutectic microstructure