Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sulcová, Olga

  • Google
  • 1
  • 7
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Mechanical Properties of Selective Laser-Melted Components of AlSi10Mg for Prototype Vehicles2citations

Places of action

Chart of shared publication
Seper, Christoph
1 / 1 shared
Silvayeh, Zahra
1 / 17 shared
Egger, Christoph
1 / 1 shared
Grünbart, Florian
1 / 2 shared
Sommitsch, Christof
1 / 71 shared
Domitner, Josef
1 / 41 shared
Pfeifer, Tanja
1 / 6 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Seper, Christoph
  • Silvayeh, Zahra
  • Egger, Christoph
  • Grünbart, Florian
  • Sommitsch, Christof
  • Domitner, Josef
  • Pfeifer, Tanja
OrganizationsLocationPeople

article

Mechanical Properties of Selective Laser-Melted Components of AlSi10Mg for Prototype Vehicles

  • Seper, Christoph
  • Sulcová, Olga
  • Silvayeh, Zahra
  • Egger, Christoph
  • Grünbart, Florian
  • Sommitsch, Christof
  • Domitner, Josef
  • Pfeifer, Tanja
Abstract

<p>Fabrication of aluminum alloy components by traditional high-pressure die casting (HPDC) requires cost- and time-consuming tooling of steel dies, which makes HPDC uneconomic for producing low-volume components or prototypes. In comparison, powder bed-based additive manufacturing, e.g. selective laser melting (SLM), enables rapid prototyping and production of even complex-shaped components directly from computer-aided design models without needing expensive tools. However, SLM prototype components must have almost identical mechanical properties to HPDC serial components in order to emulate their functionality under different load conditions. In this work uniaxial tensile properties of cast alloy AlSi10MnMg (EN AC-43500) in condition T7, i.e. with 120-170 MPa yield stress, 200-240 MPa tensile strength and 9-12 % strain at fracture, shall be attained using selective laser melting of powder alloy AlSi10Mg (EN AC-43000). These properties were achieved by tailored heat treatment. Furthermore, the effect of hot isostatic pressing (HIP) was investigated. The results of the tensile tests confirmed the basic feasibility of substituting HPDC components with SLM components for prototyping. In particular, similar tensile strength and uniform strain were achieved for SLM samples in condition O, i.e. for SLM samples which were only annealed.</p>

Topics
  • aluminium
  • strength
  • steel
  • selective laser melting
  • tensile strength
  • hot isostatic pressing
  • die casting