People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ghosh, Sumit
University of Oulu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Comparative Study of High-Cycle Fatigue and Failure Mechanisms in Ultrahigh-Strength CrNiMoWMnV Low-Alloy Steels
- 2024Stress Intensity Range Dependent Slowing Down of Fatigue Crack Growth under Strain‐Induced Martensitic Transformation of Film‐Like Retained Austenite
- 2023Microstructural Characteristics and Mechanical Properties of Nanostructured Bainite Processed through High and Low Temperature Ausforming and Isothermal Holding near Ms in a Medium Carbon Steelcitations
- 2023Effect of High-Temperature Tempering on Microstructure and Mechanical Strength of Laser-Welded Joints between Medium-Mn Stainless Steel and High-Strength Carbon Steel
- 2023High-stress abrasive wear performance of medium-carbon direct-quenched and partitioned, carbide-free bainitic, and martensitic steelscitations
- 2023Dynamic softening kinetics of Al0.3CoCrFeNi high-entropy alloy during high temperature compression and its correlation with the evolving microstructure and micro-texturecitations
- 2023A combined 3D-atomic/nanoscale comprehension and ab initio computation of iron carbide structures tailored in Q&P steels via Si alloyingcitations
- 2022Mean-stress sensitivity of an ultrahigh-strength steel under uniaxial and torsional high and very high cycle fatigue loadingcitations
- 2022Characterization of hot deformation behavior of Al0.3CoCrFeNi high entropy alloy and development of processing mapcitations
- 2022High-Speed Erichsen Testing of Grain-Refined 301LN Austenitic Stainless Steel Processed by Double-Reversion Annealingcitations
- 2022Constitutive modeling and hot deformation processing map of a new biomaterial Ti–14Cr alloycitations
- 2021Effect of Silicon Content on the Decomposition of Austenite in 0.4C Steel during Quenching and Partitioning Treatmentcitations
- 2021The Multiphase Micro- and Nanostructures of 0.2 and 0.4 C Direct-Quenched and Partitioned Steelscitations
- 2021Characteristics of dynamic softening during high temperature deformation of CoCrFeMnNi high-entropy alloy and its correlation with the evolving microstructure and micro-texturecitations
- 2021Fracture Toughness and Fatigue Crack Growth Characteristics of UFG Microalloyed and IF Steels Processed by Critical Phase Control Multiaxial Forgingcitations
- 2021Tensile Properties and Deformation of AISI 316L Additively Manufactured with Various Energy Densitiescitations
- 2020Processing map for controlling microstructure and unraveling various deformation mechanisms during hot working of CoCrFeMnNi high entropy alloycitations
- 2015Antiferromagnetic spin-orbitronics
Places of action
Organizations | Location | People |
---|
article
Effect of Silicon Content on the Decomposition of Austenite in 0.4C Steel during Quenching and Partitioning Treatment
Abstract
<jats:p>Although quenched and partitioned (Q&P) steels are traditionally alloyed with Si, its precise role on microstructural mechanisms occurring during the partitioning process is not thoroughly investigated. In this study, a systematic investigation has been carried out to reveal the influence of Si on austenite decomposition, phase transformation and carbide precipitation during Q&P treatment. Using a Gleeble thermomechanical simulator, three medium carbon steels with varying Si contents (0.25, 0.70 and 1.5 wt.%) were hot-rolled, reaustenitized, quenched into the M<jats:sub>s</jats:sub> -M<jats:sub>f</jats:sub> range, retaining about 20% austenite at the quench-stop temperature (T<jats:sub>Q</jats:sub>), and held for 1000 seconds above T<jats:sub>Q</jats:sub> in the temperature range of 200-300°C in order to better understand the mechanisms operating during partitioning. Dilatometric measurements combined with microstructural characterization using SEM-EBSD, TEM, and XRD clearly revealed the occurrence of various mechanisms. The effect of partitioning temperature/time on the hardness of the Q&P samples was correlated with the microstructural features. Steel containing low Si content (0.25%) was incapable of promoting carbon enrichment of austenite during partitioning, leading to its continuous decomposition into isothermal martensite and/or bainite without any detectable austenite retained even holding at 300°C. In comparison, 1.5% Si content promoted retention of about 19% austenite under similar Q&P conditions. Small fractions of bainite and high-carbon martensite formed during final cooling in both steels after partitioning at 200°C. Moreover, carbide precipitation was strongly retarded by high Si content.</jats:p>