Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Benbalit, Chahrazad

  • Google
  • 2
  • 3
  • 4

Institut UTINAM

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Metal-free and carbon-free flexible self-supporting thin film electrodes2citations
  • 2021Metal-Free and Carbon-Free Flexible Self-Supporting Thin Film Electrodes2citations

Places of action

Chart of shared publication
Scheuber, Olivera
1 / 2 shared
Schintke, Silvia
1 / 15 shared
Frau, Eleonora
1 / 5 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Scheuber, Olivera
  • Schintke, Silvia
  • Frau, Eleonora
OrganizationsLocationPeople

article

Metal-Free and Carbon-Free Flexible Self-Supporting Thin Film Electrodes

  • Benbalit, Chahrazad
Abstract

<jats:p>Conductive polymers are promising for application in the medical and sport sectors, e.g. for thin wearable health monitoring systems. While many today’s electrodes contain either carbon or metals as electrically conductive filler materials, product design manufacturing has an increasing interest in the development of metal free and carbon free, purely polymer based electrode materials. While conducting polymers have generally rather low electrical conductivities compared to metals or carbon, they offer broad options for industrial processing, as well as for dedicated adjustments of final product properties and design aspect, such as colour, water repellence, or mechanical flexibility in addition to their electrical properties. The development of electrically conducting polymer blends, based on conductive polymers is thus timely and of high importance for the design of new attractive flexible electrodes. We have developed material formulation and processing techniques for the fabrication of self-supporting thin film electrodes based on polyaniline (PANI) and polyvinylidene fluoride (PVDF) blends. Electrical four-point probing was used to evaluate the electrode conductivity for different processing and fabrication techniques. Optical microscopy and atomic force microscopy measurements corroborate the observed electrical conductivity obtained even at low PANI concentrations revealing the nanoscale material distribution within the blends. Our self-supporting thin film electrodes are flexible, smooth, and water repellent and were furthermore successfully tested under bending and upon storage over a period of several months. This opens new perspectives for the design of metal free and carbon free flexible electrodes for medical, health, and sports applications.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • thin film
  • atomic force microscopy
  • optical microscopy
  • electrical conductivity
  • polymer blend