Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mazur, Maurício Marlon

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Laser Welding Influence on Corrosion Rate of Galvanized Sheets of DP600 Automobilistic Alloycitations

Places of action

Chart of shared publication
Nascimento, Sílvia Rosa
1 / 1 shared
Mazur, Viviane Teleginski
1 / 2 shared
Braz, Willer Cézar
1 / 1 shared
Oliveira, Marilei De Fátima
1 / 1 shared
Lima, Milton Sergio Fernandes
1 / 1 shared
Castro, Correard Gilson Carlos De
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Nascimento, Sílvia Rosa
  • Mazur, Viviane Teleginski
  • Braz, Willer Cézar
  • Oliveira, Marilei De Fátima
  • Lima, Milton Sergio Fernandes
  • Castro, Correard Gilson Carlos De
OrganizationsLocationPeople

article

Laser Welding Influence on Corrosion Rate of Galvanized Sheets of DP600 Automobilistic Alloy

  • Mazur, Maurício Marlon
  • Nascimento, Sílvia Rosa
  • Mazur, Viviane Teleginski
  • Braz, Willer Cézar
  • Oliveira, Marilei De Fátima
  • Lima, Milton Sergio Fernandes
  • Castro, Correard Gilson Carlos De
Abstract

<jats:p>Corrosion rate behavior of laser welded dual-phase galvanized steel, DP 600, has been assessed in comparison with the material without the laser weld, in 3.5% NaCl solution. Three combinations of both scanning speed and laser power parameters were selected, maintaining the thermal input of 30 J mm<jats:sup>-1</jats:sup>, calculated as the ratio between the laser beam power [W] and the scanning speed [mm s<jats:sup>-1</jats:sup>]. The corrosion studies included measurements of open circuit potential, micro and macro polarization, showing higher corrosion rates as scanning speed decreased. Optical microscopy showed the formation of a grain size refined morphology in the heat affected zone and fusion zone. A mechanism has been proposed to explain the corrosion behavior as a function of the laser parameters, which dictated the galvanized coating vaporization.</jats:p>

Topics
  • morphology
  • grain
  • corrosion
  • grain size
  • phase
  • steel
  • optical microscopy