Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Filho, Carlos Trivellato De Carvalho

  • Google
  • 2
  • 2
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Study of Corrosion Behavior of Friction Surfacing AA6351 Aluminium Alloy Coating on AISI 1020 Low Carbon Steel1citations
  • 2020Electrochemical Corrosion Behavior of Iron Aluminides in Sulfuric Acid2citations

Places of action

Chart of shared publication
Brito, Pedro Paiva
2 / 4 shared
Oliveira, Gabriela De Andrade
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Brito, Pedro Paiva
  • Oliveira, Gabriela De Andrade
OrganizationsLocationPeople

article

Study of Corrosion Behavior of Friction Surfacing AA6351 Aluminium Alloy Coating on AISI 1020 Low Carbon Steel

  • Brito, Pedro Paiva
  • Filho, Carlos Trivellato De Carvalho
Abstract

<jats:p>In the present work, the friction surfacing process was applied to manufacture aluminum alloy (AA6351) coatings on low carbon steel (AISI 1020) substrates. After friction surfacing the AA6351 deposited coatings were submitted to two finishing process in order to adjust surface roughness: milling and milling followed by sanding. The corrosion behavior of the two finishing process was compared with the as-deposited condition in order to determine the influence of surface roughness on the corrosion resistance of friction surfacing coatings. The corrosion behavior was examined by electrochemical impedance spectroscopy and potentiodynamic polarization in a 3.5wt.%NaCl solution containing naturally dissolved O<jats:sub>2</jats:sub>. The results obtained indicated that the elevated surface roughness observed in the as-deposited condition led to relatively lower corrosion resistance in comparison, with lower values for polarization resistance and more anodic corrosion potential.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Carbon
  • corrosion
  • grinding
  • aluminium
  • milling
  • steel
  • aluminium alloy