Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Unt, Anna

  • Google
  • 4
  • 5
  • 21

Lappeenranta-Lahti University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2020Integration of Simulation Driven DfAM and LCC Analysis for Decision Making in L-PBF7citations
  • 2019Аpplication Development for the Evaluation of Penetration in Laser and Laser-Arc Hybrid Welding of Tee and Corner Joints2citations
  • 2019Research of Mechanical Properties of Cold Resistant Steel 09CrNi2MoCu after Direct Laser Deposition6citations
  • 2018Laser scribing of stainless steel with and without work media6citations

Places of action

Chart of shared publication
Piili, Heidi
2 / 26 shared
Nyamekye, Patricia
1 / 6 shared
Salminen, Antti
2 / 44 shared
Manninen, Matti
1 / 1 shared
Hirvimäki, Marika
1 / 2 shared
Chart of publication period
2020
2019
2018

Co-Authors (by relevance)

  • Piili, Heidi
  • Nyamekye, Patricia
  • Salminen, Antti
  • Manninen, Matti
  • Hirvimäki, Marika
OrganizationsLocationPeople

article

Research of Mechanical Properties of Cold Resistant Steel 09CrNi2MoCu after Direct Laser Deposition

  • Unt, Anna
Abstract

<jats:p>Review focuses on describing of mechanical properties of the components manufactured via direct laser depositionfrom cold resistant steel material. The results of tensile and impact testing are presented and microstructures of the fractures are shown. The process of laser deposition of cold-resistant steels, the formation of structures, as well as the mechanical properties of these samples are poorly understood. The results of tensile and impact tests are presented, and microstructures are shown. Mechanical tests for impact strength were carried out at a temperature of -40˚С, with different laser radiation powers. The results are given using the as-received powder, as well as used powder with a different mixing ratio, and the results are analyzed. As a result of the study, it was found that the fractional composition of the 09XH2MD alloy powder affects the mechanical characteristics of samples obtained by direct laser deposition. The effect of recycled powder on the mechanical properties of the obtained samples is given, the optimal laser deposition regimes are selected</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • microstructure
  • strength
  • steel
  • impact test