Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Unt, Anna

  • Google
  • 4
  • 5
  • 21

Lappeenranta-Lahti University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2020Integration of Simulation Driven DfAM and LCC Analysis for Decision Making in L-PBF7citations
  • 2019Аpplication Development for the Evaluation of Penetration in Laser and Laser-Arc Hybrid Welding of Tee and Corner Joints2citations
  • 2019Research of Mechanical Properties of Cold Resistant Steel 09CrNi2MoCu after Direct Laser Deposition6citations
  • 2018Laser scribing of stainless steel with and without work media6citations

Places of action

Chart of shared publication
Piili, Heidi
2 / 26 shared
Nyamekye, Patricia
1 / 6 shared
Salminen, Antti
2 / 44 shared
Manninen, Matti
1 / 1 shared
Hirvimäki, Marika
1 / 2 shared
Chart of publication period
2020
2019
2018

Co-Authors (by relevance)

  • Piili, Heidi
  • Nyamekye, Patricia
  • Salminen, Antti
  • Manninen, Matti
  • Hirvimäki, Marika
OrganizationsLocationPeople

article

Аpplication Development for the Evaluation of Penetration in Laser and Laser-Arc Hybrid Welding of Tee and Corner Joints

  • Unt, Anna
Abstract

Laser technologies deservedly take their place in modern mechanical engineering production. Using laser source for welding has already become common. However, the creation of critical welded constructions is impossible without extensive technological surveys, which can be greatly simplified by using a computational experiment. To achieve this goal, special programs are usually used. That can be unjustified difficult and thereby awkward for technological practice. The article describes an application built on the basis of a simplified model for calculating the temperature field for the cases of laser and laser-arc welding of internal fillet welds as well as single-sided T-joints and simultaneous double-sided welds. The results of calculations by the model and comparing them with experimental data have shown that it is sufficiently adequate for use in technological purposes. The developed application contemporaneously has a simple and intuitive interface, does not require significant computational resources and can be used for quick preliminary estimation of the result of welding for the selected type of weld.

Topics
  • impedance spectroscopy
  • experiment