People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Akinwamide, Samuel Olukayode
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Structural integrity and hybrid ANFIS-PSO modeling of the corrosion rate of ductile irons in different environmentscitations
- 2024Characterization of friction stir-based linear continuous joining of aluminium alloy to structural polymercitations
- 2024Densification and corrosion properties of graphite reinforced binderless TiC70N30 ceramic compositescitations
- 2024Tribological properties of graphitized TiC0.5N0.5 based composites using response surface methodologycitations
- 2023Microstructure and biocorrosion studies of spark plasma sintered yttria stabilized zirconia reinforced Ti6Al7Nb alloy in Hanks' solutioncitations
- 2023Nanoindentation and Corrosion Behaviour of 410 Stainless Steel Fabricated Via Additive Manufacturingcitations
- 2023Synthesis and characterization of spark plasma sintered zirconia and ferrotitanium reinforced hybrid aluminium compositecitations
- 2023Synthesis and characterization of spark plasma sintered zirconia and ferrotitanium reinforced hybrid aluminium compositecitations
- 2023Characterization of pulse electric current sintered Ti-6Al-4V ternary composites : Role of YSZ-Si3N4 ceramics addition on structural modification and hydrogen desorptioncitations
- 2023The Effect of TiN-TiB2 on the Microstructure, Wear, and Nanoindentation Behavior of Ti6Al4V-Ni-Cr Matrix Compositescitations
- 2022A Review on Heat Treatment of Cast Iron: Phase Evolution and Mechanical Characterizationcitations
- 2022Insight into tribological and corrosion behaviour of binderless TiCxNy ceramic composites processed via pulsed electric current sintering techniquecitations
- 2022A review on optical properties and application of transparent ceramicscitations
- 2022Alloying effect of copper in AA-7075 aluminum composite using bale out furnacecitations
- 2019A Nanoindentation Study on Al (TiFe-Mg-SiC) Composites Fabricated via Stir Castingcitations
Places of action
Organizations | Location | People |
---|
article
A Nanoindentation Study on Al (TiFe-Mg-SiC) Composites Fabricated via Stir Casting
Abstract
<jats:p>The limitations of aluminium in most engineering applications has led to the development of aluminium matrix composites with improved microstructural and mechanical properties. Nanoindentation techniques was used in assessing the mechanical properties of fabricated aluminium matrix composites with ferrotitanium and silicon carbide as reinforcements. Results from nanoindentation experiments shows the dependence of modulus of elasticity, microhardness and contact depth on the dispersion of ferrotitanium and silicon carbide reinforcements within the aluminium matrix. Highest nanohardness value was observed in composite with 7 wt. % silicon carbide, while the lowest elastic modulus was recorded in as-cast aluminium. Further analysis of specimens confirmed a decrease in maximum penetration depth with respective increase in the addition of silicon carbide reinforcements in the fabricated composites.</jats:p>