Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Genta, Gianfranco

  • Google
  • 3
  • 6
  • 44

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Application of design of experiments to forging simulations to increase die life expectancy3citations
  • 2020Defect Probability Estimation for Hardness-Optimised Parts by Selective Laser Melting34citations
  • 2019Assessment of Heat Treatment Effect on AlSi10Mg by Selective Laser Melting through Indentation Testing7citations

Places of action

Chart of shared publication
Doglione, Roberto
1 / 6 shared
Antonelli, Dario
1 / 1 shared
Alessio, Alessandro
1 / 1 shared
Galetto, Maurizio
1 / 2 shared
Maculotti, Giacomo
1 / 1 shared
Verna, Elisa
1 / 5 shared
Chart of publication period
2023
2020
2019

Co-Authors (by relevance)

  • Doglione, Roberto
  • Antonelli, Dario
  • Alessio, Alessandro
  • Galetto, Maurizio
  • Maculotti, Giacomo
  • Verna, Elisa
OrganizationsLocationPeople

article

Assessment of Heat Treatment Effect on AlSi10Mg by Selective Laser Melting through Indentation Testing

  • Genta, Gianfranco
Abstract

<jats:p>Selective Laser Melting (SLM) is one of the leader metal Additive Manufacturing (AM) processes thanks to its capability of coupling freeform design and environmental and economical sustainability to high mechanical properties. AlSi10Mg is a light weight Al-alloy with interesting processing properties and enhanced strength thanks to the presence of Mg, which, hence, finds application in several industrial fields. Furthermore, SLM allows overcoming those design constraints set by casting and melt spinning; however, SLM AlSi10Mg components require to be heat treated, both to strengthen the material and to engineer the microstructure. In this work, in order to assess the effectiveness of heat treatments on AlSi10Mg by SLM, an ad hoc analysis procedure based on statistical tools is applied in combination with indentation characterisation tests. In particular, to achieve full scale characterisation, traditional Brinell hardness and Instrumented Indentation Test (IIT) in macro and nano-range are considered. In particular, IIT is applied both at the lower end of macro range to provide consistency and statistically investigate relationship with Brinell scale and in the nano-range, enabling local, i.e. grain, and surface properties to be characterised.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • grain
  • melt
  • strength
  • selective laser melting
  • casting
  • melt spinning
  • brinell hardness