Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Saastamoinen, Ari

  • Google
  • 11
  • 23
  • 315

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2022Impact-abrasive and abrasive wear behavior of low carbon steels with a range of hardness-toughness properties45citations
  • 2020Impact-abrasive and abrasive wear behavior of low carbon steels with a range of hardness-toughness properties45citations
  • 2020Constitutive modelling of hot deformation behaviour of a CoCrFeMnNi high-entropy alloy55citations
  • 2019Annealing Effects on the Microstructure and Properties of Vanadium and Molybdenum Rich FCC High Entropy Alloy2citations
  • 2019Microstructure and Mechanical Properties of Nb and V Microalloyed TRIP-Assisted Steels9citations
  • 2019Quenching and Partitioning of Multiphase Aluminum-Added Steels11citations
  • 2019Direct-quenched and tempered low-C high-strength structural steel: The role of chemical composition on microstructure and mechanical properties24citations
  • 2018The effect of tempering temperature on microstructure, mechanical properties and bendability of direct-quenched low-alloy strip steel31citations
  • 2018The effect of finish rolling temperature and tempering on the microstructure, mechanical properties and dislocation density of direct-quenched steel68citations
  • 2017The effect of thermomechanical treatment and tempering on the subsurface microstructure and bendability of direct-quenched low-carbon strip steel23citations
  • 2015Fast Salt Bath Heat Treatment for a Bainitic/Martensitic Low-Carbon Low-Alloyed Steel2citations

Places of action

Chart of shared publication
Kuokkala, Veli-Tapani
2 / 64 shared
Saha, Gourab
2 / 6 shared
Valtonen, Kati
2 / 57 shared
Peura, Pasi
6 / 56 shared
Patnamsetty, Madan
3 / 16 shared
Mahesh, Somani
1 / 4 shared
Järvenpää, Martti
1 / 6 shared
Oja, Olli
2 / 12 shared
Honkanen, Mari Hetti
1 / 59 shared
Nyyssönen, Tuomo
1 / 12 shared
Somani, Mahesh
1 / 8 shared
Jussila, Petri
1 / 1 shared
Porter, David
4 / 17 shared
Nyo, Tun Tun
1 / 5 shared
Kömi, Jukka
1 / 31 shared
Suikkanen, Pasi
4 / 7 shared
Kaijalainen, Antti
4 / 19 shared
Heikkala, Jouko
1 / 1 shared
Yang, Jer Ren
1 / 1 shared
Tsai, Yu Ting
1 / 1 shared
Kivivuori, S.
1 / 1 shared
Urbanec, J.
1 / 1 shared
Louhenkilpi, S.
1 / 4 shared
Chart of publication period
2022
2020
2019
2018
2017
2015

Co-Authors (by relevance)

  • Kuokkala, Veli-Tapani
  • Saha, Gourab
  • Valtonen, Kati
  • Peura, Pasi
  • Patnamsetty, Madan
  • Mahesh, Somani
  • Järvenpää, Martti
  • Oja, Olli
  • Honkanen, Mari Hetti
  • Nyyssönen, Tuomo
  • Somani, Mahesh
  • Jussila, Petri
  • Porter, David
  • Nyo, Tun Tun
  • Kömi, Jukka
  • Suikkanen, Pasi
  • Kaijalainen, Antti
  • Heikkala, Jouko
  • Yang, Jer Ren
  • Tsai, Yu Ting
  • Kivivuori, S.
  • Urbanec, J.
  • Louhenkilpi, S.
OrganizationsLocationPeople

article

Annealing Effects on the Microstructure and Properties of Vanadium and Molybdenum Rich FCC High Entropy Alloy

  • Patnamsetty, Madan
  • Saastamoinen, Ari
  • Peura, Pasi
Abstract

In the past decade, research into High Entropy alloys (HEAs) have gained significant attention due to their outstanding properties and approach to design alloys for high temperature applications. Strengthening of face centered cubic (FCC) based HEAs, by addition of intermetallic phase or precipitate forming elements is a very captivating direction of alloy designing for high temperature structural applications. However, the knowledge regarding the influence of intermetallic phases on the properties of FCC HEAs is rare. The current study focuses on annealing effects on the microstructure of Cr20Co20Fe25Ni25V5Mo5 (at. %) alloy, this alloy was synthesized using induction melting, and was homogenized at 1200 °C for 12h. X-ray diffraction analysis indicated that the principle phase was (FCC) identified. Scanning electron microscopy (SEM) together with Energy Dispersion X-ray Spectroscopy (EDS) showed that there is an additional phases that is Mo-rich. In order to understand the effect of the high temperature annealing on phase stability, the homogenized samples were annealed at 700 °C, 800 °C, 900 °C, 1000 °C each for 6h and quenched. The annealing treatments had considerable effect on the crystal structure and the elemental distribution. The Mo-rich phase is precipitated at the grain boundaries at all temperatures. Additionally, at 1000 °C annealing temperature Mo-rich phase had precipitated inside the grains. The lower annealing temperatures inhibited diffusion of Mo, which restricted the Mo-rich phase formation. Additionally, the hardness is increased to 195 HV at 1000 °C due precipitation hardening. At other annealing temperatures the hardness is reduced to 145 – 158 HV.<br/>

Topics
  • impedance spectroscopy
  • dispersion
  • molybdenum
  • grain
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • hardness
  • precipitate
  • precipitation
  • forming
  • annealing
  • Energy-dispersive X-ray spectroscopy
  • intermetallic
  • vanadium
  • phase stability