People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hartmann, Christoph
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024New test rig for biaxial and plane strain states on uniaxial testing machines
- 2023Predicting the local solidification time using spherical neural networks
- 2023An artificial neural network approach on crystal plasticity for material modelling in macroscopic simulationscitations
- 2023Establishing Equal-Channel Angular Pressing (ECAP) for sheet metals by using backpressure: manufacturing of high-strength aluminum AA5083 sheetscitations
- 2023Analysis of the melting and solidification process of aluminum in a mirror furnace using Fiber-Bragg-Grating and numerical modelscitations
- 2022Localization of cavities in cast components via impulse excitation and a finite element analysiscitations
- 2021Combining Structural Optimization and Process Assurance in Implicit Modelling for Casting Partscitations
- 2021Feasibility of Acoustic Print Head Monitoring for Binder Jetting Processes with Artificial Neural Networkscitations
- 2019Data-Driven Compensation for Bulk Formed Parts Based on Material Point Trackingcitations
Places of action
Organizations | Location | People |
---|
article
Data-Driven Compensation for Bulk Formed Parts Based on Material Point Tracking
Abstract
<jats:p>Currently, common inefficient trial-and-error procedures are used in designing bulk forming dies. Numerous iterations, consisting of numerical simulations and subsequent real tests, are needed to achieve accurate parts. During the compensation cycles, manual redesign in CAD environments is necessary to transform discrete data into parametric descriptions causing approximation errors. Automation of these surface reconstruction processes is barely possible. To address these issues, different data-driven numerical strategies have been deduced based on either displacement or force. In this work, a material point tracking method in forming simulation between die and part geometry is presented. Based on this, enhanced displacement-based and stress-based methods for compensation of bulk forming parts are compared. The convergence behavior of both methods is analyzed with respect to the compensation factor. Finally, the material point tracking approach is validated and verified by compensating a two-dimensional bulk-formed component.</jats:p>