People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rahman, Hamimah Abdul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Influence of Electrophoretic Deposition (EPD) Voltage on SOFC Interconnect Morphologycitations
- 2021Linear Shrinkage, Strength and Porosity of Alumina-Based Ceramic Foam with Corn Starch as Pore Former
- 2021Fabrication of Silica (SiO2) Foam from Rice Husk Ash (RHA): Effects of Solid Loadings
- 2021Effect of Fabrication Method on Tensile Behaviour of Polysiloxane (POS) Filled Rice Husk Silica (RHA SiO2) Compositescitations
- 2021Perovskite-Type Oxide-Based Dual Composite Cathode for Solid Oxide Fuel Cells: A Short Review
- 2019Effect of SSC Loading on the Microstructural Stability SSC-SDCC Composite Cathode as New Potential SOFC
- 2018Eco-Friendly Flame-Retardant Additives for Polyurethane Foams: A Short Reviewcitations
- 2018FTIR and XRD Evaluation of Magnesium Doped Hydroxyapatite/Sodium Alginate Powder by Precipitation Methodcitations
- 2018Effect of Milling Process and Calcination Temperature on the Properties of BSCF-SDC Composite Cathodecitations
- 2018Morphological and Physical Behaviour on the Sm0.5Sr0.5CoO3-δ/Sm0.2 Ce0.8O1.9 Incorporation with Binary Carbonate as Potential Cathode Materials for SOFCcitations
- 2018Influence of Heat Treatment and Milling Speed on Phase Stability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Composite Cathode Solid Oxide Fuel Cellcitations
- 2017Effects of Milling Speed and Calcination Temperature on the Phase Stability of Ba0.5Sr0.5Co0.8Fe3-δcitations
- 2017Diversification studies on samarium strontium cobaltite regarding thermal & structural properties as based composite cathode of SOFCcitations
- 2016Preparation of Nickel Oxide-Samarium-Doped Ceria Carbonate Composite Anode Powders by Using High-Energy Ball Milling for Low-Temperature Solid Oxide Fuel Cellscitations
- 2016Ba- and La- strontium cobalt ferrite carbonate composite as cathode materials for low temperature SOFCcitations
- 2015XRD and EDS Analysis of Composite Cathode Powders LSCF-SDCC-Ag for Low Temperature Solid Oxide Fuel Cells (LTSOFC)citations
Places of action
Organizations | Location | People |
---|
article
Morphological and Physical Behaviour on the Sm0.5Sr0.5CoO3-δ/Sm0.2 Ce0.8O1.9 Incorporation with Binary Carbonate as Potential Cathode Materials for SOFC
Abstract
<jats:p>The correlation between calcination temperature with the morphological, porosity and density of Sm<jats:sub>0.5</jats:sub>Sr<jats:sub>0.5</jats:sub>CoO<jats:sub>3−δ</jats:sub>/ Sm<jats:sub>0.2</jats:sub>Ce<jats:sub>0.8</jats:sub>O<jats:sub>1.9</jats:sub>incorporation with binary carbonate prepared by high energy ball milling (HEBM) method has been investigated. The composite cathode, samarium strontium cobaltite-samarium doped ceria carbonate (SSC:SDCc), was developed and scrutinised as for potential cathode materials in solid oxide fuel cell (SOFC) applications. This research studied the influence of carbonate in composite electrolyte, SDCc towards the composite cathode properties. The composition of 50 wt.% of SSC was chosen to be added with 50 wt.% of SDCc powder. The prepared powders of composite cathode SSC5:SDCc5 were then undergone calcination process at different operating temperatures which has been varied from 600°C, 650°C, 700°C and 750°C and all prepared pellets were sintered at 600 °C. The morphological properties of the composite cathode powders were observed via FESEM micrograph, and the average particle sizes of the composite powders were measured via SmartTiff Software. The total porosity (%) of the SSC5:SDCc5 composite cathode pellets was determined using the Archimedes method. The FESEM micrograph revealed that the obtained composite cathode powder is homogeneous, fine with average of agglomerates sizes of 70–100 nm. By increased on calcination temperatures, the agglomerates size of the composite cathode and the density of the pellet increased. Meanwhile the results collected from porosity value are decreased. The porosity percentage lies in the range from 32.3% until 38.7%. Based on the overall results, lower calcination temperature, which is 600° lead to better morphological and physical results. In conclusion, the calcination temperature has a direct effect on the average size of SSC-SDCc composite cathode, porosity and density value but still in line within the acceptable range to serve as effective potential cathode materials for solid oxide fuel cells.</jats:p>