Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rehman, Dr. Zaeem Ur

  • Google
  • 2
  • 4
  • 9

Gdańsk University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Graphene Oxide Coatings Deposited on Steel Substrate Using Electrophoretic Deposition and Electrochemical Evaluation of Coatings in Saline Media9citations
  • 2018Graphene Oxide Coatings Deposited on Steel Substrate Using Electrophoretic Deposition and Electrochemical Evaluation of Coatings in Saline Mediacitations

Places of action

Chart of shared publication
Raza, Mohsin Ali
1 / 4 shared
Kanwal, Rumasa
1 / 1 shared
Ahmad, Akhlaq
1 / 3 shared
Ghauri, Faizan Ali
1 / 1 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Raza, Mohsin Ali
  • Kanwal, Rumasa
  • Ahmad, Akhlaq
  • Ghauri, Faizan Ali
OrganizationsLocationPeople

article

Graphene Oxide Coatings Deposited on Steel Substrate Using Electrophoretic Deposition and Electrochemical Evaluation of Coatings in Saline Media

  • Rehman, Dr. Zaeem Ur
Abstract

<jats:p>In this study graphene coatings were deposited on mild steel substrate using feasible and environmental friendly method. The successful synthesis of graphite oxide was carried by the modified Hummer’s method. Graphene oxide (GO) coatings were developed from GO/water suspension using electrophoretic deposition (EPD). The EPD parameters voltage and deposition time were varied to deposit uniform adherent coatings. The coatings were post heat treated at 200 °C in vacuum for 4h to assess the effect on coated samples. GO and GO-EPD coating morphology were characterized using Fourier transform infrared spectroscopy (FTIR), Atomic force microscopy (AFM) and Scanning electron microscopy (SEM). Linear polarization (LPR) and electrochemical impedance spectroscopy (EIS) tests were performed in saline solution to evaluate electrochemical response. Coatings were partially reduced due to removal of oxygen containing functional groups during EPD and post heat treatments. The GO post heat treated coating had better corrosion resistance ~2 times than that of bare mild steel and higher charge transfer resistance.</jats:p>

Topics
  • Deposition
  • morphology
  • corrosion
  • scanning electron microscopy
  • Oxygen
  • atomic force microscopy
  • steel
  • electrochemical-induced impedance spectroscopy
  • Fourier transform infrared spectroscopy