Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Urban, Petr

  • Google
  • 19
  • 16
  • 144

Universidad de Sevilla

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (19/19 displayed)

  • 2024Milling amorphous FeSiB ribbons with vibratory ball and disc millscitations
  • 2024Milling amorphous FeSiB ribbons with vibratory ball and disc mills2citations
  • 2024Characteristics of Mechanically Alloyed Amorphized Ferromagnetic Particles of Fe₇₈Si₂₂ y Fe₇₈Si₉9B₁₃citations
  • 2024Amorphous Phase Formation and Heat Treating Evolution in Mechanically Alloyed Ti–Cu Alloy for Biomedical Applications2citations
  • 2024Electrical discharge consolidation of Al and Ti powderscitations
  • 2024Evolution of Extremely Fast Electrical Discharge Sintering of Ti-Al Alloycitations
  • 2023Consolidation of iron powder by electrical dischargecitations
  • 2023Mechanical alloying and amorphization of Ti75Cu25 alloycitations
  • 2023Magnetic properties of iron powder sintered by medium-frequency electrical resistance sinteringcitations
  • 2022Influence of Temperature on Mechanical Properties of AMCs3citations
  • 2022Amorphous Phase Formation and Heat Treating Evolution in Mechanically Alloyed Ti–Cu Alloy for Biomedical Applications2citations
  • 2022Consolidation of iron powder by electrical discharge3citations
  • 2021Influence of the Total Porosity on the Properties of Sintered Materials—A Review97citations
  • 2020Influence of Temperature on Mechanical Properties of AMCs3citations
  • 2019Amorphous Al-Ti Powders Prepared by Mechanical Alloying and Consolidated by Electrical Resistance Sintering14citations
  • 2019Amorphous Al-Ti Powders Prepared by Mechanical Alloying and Consolidated by Electrical Resistance Sintering14citations
  • 2019Amorphous Al-Ti Powders Prepared by Mechanical Alloying and Consolidated by Electrical Resistance Sinteringcitations
  • 2018Amorphous Phase Formation and Heat Treating Evolution in Mechanically Alloyed Al-Ti Powders4citations
  • 2015Phase stability, porosity distribution and microstructural evolution of amorphous Al50Ti50 powders consolidated by electrical resistance sinteringcitations

Places of action

Chart of shared publication
Gómez Cuevas, Francisco De Paula
9 / 32 shared
Soto Aranda, Beatriz
1 / 1 shared
Aranda Louvier, Rosa María
9 / 15 shared
Astacio López, Raquel
8 / 17 shared
Astacio, Raquel
2 / 9 shared
Aranda Louvier, Beatriz
1 / 2 shared
Ternero Fernández, Fátima
13 / 30 shared
Náhlík, L.
1 / 58 shared
Cintas Físico, Jesús
6 / 22 shared
Montes Martos, Juan Manuel
6 / 26 shared
Cuevas, F. G.
1 / 4 shared
Caballero, E. S.
1 / 2 shared
Guerra Rosa, Luís
1 / 2 shared
Caballero, Eduardo S.
2 / 4 shared
Nandyala, Sooraj
2 / 2 shared
Caballero Sánchez, Eduardo
1 / 3 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2018
2015

Co-Authors (by relevance)

  • Gómez Cuevas, Francisco De Paula
  • Soto Aranda, Beatriz
  • Aranda Louvier, Rosa María
  • Astacio López, Raquel
  • Astacio, Raquel
  • Aranda Louvier, Beatriz
  • Ternero Fernández, Fátima
  • Náhlík, L.
  • Cintas Físico, Jesús
  • Montes Martos, Juan Manuel
  • Cuevas, F. G.
  • Caballero, E. S.
  • Guerra Rosa, Luís
  • Caballero, Eduardo S.
  • Nandyala, Sooraj
  • Caballero Sánchez, Eduardo
OrganizationsLocationPeople

article

Amorphous Phase Formation and Heat Treating Evolution in Mechanically Alloyed Al-Ti Powders

  • Urban, Petr
Abstract

<jats:p>This paper focuses on the microstructural characterization of Al<jats:sub>25</jats:sub>Ti<jats:sub>75</jats:sub>, Al<jats:sub>37</jats:sub>Ti<jats:sub>63</jats:sub>, Al<jats:sub>50</jats:sub>Ti<jats:sub>50</jats:sub>, Al<jats:sub>63</jats:sub>Ti<jats:sub>37</jats:sub>and Al<jats:sub>75</jats:sub>Ti<jats:sub>25</jats:sub>powders mixtures prepared by mechanical alloying (MA). The high-energy ball-milling, up to 75 h, of aluminium and titanium powders leads to a nanocrystalline or an amorphous structure. It is showed that a stable amorphous Al–Ti phase with uniform elemental distribution forms after 50 h of milling in Al<jats:sub>50</jats:sub>Ti<jats:sub>50</jats:sub>alloy. Heat treatment of the different alloys leads to the crystallization of AlTi<jats:sub>3</jats:sub>, AlTi, Al<jats:sub>2</jats:sub>Ti and Al<jats:sub>3</jats:sub>Ti intermetallic compounds. A comprehensive study by laser granulometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) was carried out on the structure, surface morphology and thermal behaviour of the MA Al-Ti mixtures, both of milled and heat treated powders.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • compound
  • amorphous
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • grinding
  • aluminium
  • milling
  • transmission electron microscopy
  • differential scanning calorimetry
  • titanium
  • intermetallic
  • crystallization
  • titanium powder