Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bagheripoor, Mahdi

  • Google
  • 1
  • 2
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016High temperature deformation of cast ZW11 magnesium alloy with very large grain sizecitations

Places of action

Chart of shared publication
Hort, N.
1 / 266 shared
Dieringa, H.
1 / 115 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Hort, N.
  • Dieringa, H.
OrganizationsLocationPeople

article

High temperature deformation of cast ZW11 magnesium alloy with very large grain size

  • Hort, N.
  • Dieringa, H.
  • Bagheripoor, Mahdi
Abstract

Magnesium (Mg) alloys are considered for biomedical applications due to their matching bone density and biodegradable/abioabsorable nature. Mg-1% Zinc-1% Yttrium (ZW11) alloy was cast using a direct chill slow cooling process to obtain dense ingot with uniform composition. However, the resultant alloy developed a very coarse grained microstructure with a grain size in the range of 2,600 to 4,000 μm (2.6-4.0 mm). The hot working behavior of ZW11 alloy has been investigated using compression tests in the temperature and strain rate ranges of 340-540 °C and 0.0003 - 10 s-1 to evaluate the optimum processing parameters. A processing map has been developed on the basis of the flow stress data. The processing map reveals a window of workability in the temperature and strain rate ranges of 460-540 °C and 0.0003-10 s-1 and regimes of flow instability. The microstructures of the deformed alloy provided support to the processing map.

Topics
  • density
  • grain
  • grain size
  • Magnesium
  • magnesium alloy
  • Magnesium
  • zinc
  • compression test
  • Yttrium