People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rahman, Hamimah Abdul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Influence of Electrophoretic Deposition (EPD) Voltage on SOFC Interconnect Morphologycitations
- 2021Linear Shrinkage, Strength and Porosity of Alumina-Based Ceramic Foam with Corn Starch as Pore Former
- 2021Fabrication of Silica (SiO2) Foam from Rice Husk Ash (RHA): Effects of Solid Loadings
- 2021Effect of Fabrication Method on Tensile Behaviour of Polysiloxane (POS) Filled Rice Husk Silica (RHA SiO2) Compositescitations
- 2021Perovskite-Type Oxide-Based Dual Composite Cathode for Solid Oxide Fuel Cells: A Short Review
- 2019Effect of SSC Loading on the Microstructural Stability SSC-SDCC Composite Cathode as New Potential SOFC
- 2018Eco-Friendly Flame-Retardant Additives for Polyurethane Foams: A Short Reviewcitations
- 2018FTIR and XRD Evaluation of Magnesium Doped Hydroxyapatite/Sodium Alginate Powder by Precipitation Methodcitations
- 2018Effect of Milling Process and Calcination Temperature on the Properties of BSCF-SDC Composite Cathodecitations
- 2018Morphological and Physical Behaviour on the Sm0.5Sr0.5CoO3-δ/Sm0.2 Ce0.8O1.9 Incorporation with Binary Carbonate as Potential Cathode Materials for SOFCcitations
- 2018Influence of Heat Treatment and Milling Speed on Phase Stability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Composite Cathode Solid Oxide Fuel Cellcitations
- 2017Effects of Milling Speed and Calcination Temperature on the Phase Stability of Ba0.5Sr0.5Co0.8Fe3-δcitations
- 2017Diversification studies on samarium strontium cobaltite regarding thermal & structural properties as based composite cathode of SOFCcitations
- 2016Preparation of Nickel Oxide-Samarium-Doped Ceria Carbonate Composite Anode Powders by Using High-Energy Ball Milling for Low-Temperature Solid Oxide Fuel Cellscitations
- 2016Ba- and La- strontium cobalt ferrite carbonate composite as cathode materials for low temperature SOFCcitations
- 2015XRD and EDS Analysis of Composite Cathode Powders LSCF-SDCC-Ag for Low Temperature Solid Oxide Fuel Cells (LTSOFC)citations
Places of action
Organizations | Location | People |
---|
article
Ba- and La- strontium cobalt ferrite carbonate composite as cathode materials for low temperature SOFC
Abstract
Barium strontium cobalt ferrite (BSCF) and lanthanum strontium carbonate ferrite (LSCF)–samarium-doped ceria carbonate (SDCc) composite cathodes were developed based on various molar ratio of binary carbonate. The percentage of molar ratio for (Li/Na)2 binary carbonate in the composite cathodes were 67:33, 62:38, and 53:47. Influence of (Li/Na)2 binary carbonate addition on BSCF-SDCc and LSCF-SDCc were studied in terms of chemical, thermal, and physical properties. The composite-cathode powders were prepared using high-energy ball milling (HEBM) and followed by calcination at 750 °C for 2h. Characterizations of the composite cathode were performed through Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), and dilatometry. The FTIR result verified the existence of carbonates in all the composite cathodes. The increment in the Na2CO3 molar ratio has contributed to the growth of the BSCF-SDCc particles as observed from the FESEM micrographs and particle size. The LSCF-SDCc composite cathodes revealed a lower (1.38-6.69%) thermal coefficient difference with SDCc electrolyte. The BSCF-SDCc and LSCF-SDCc composites with 53:47 mol.% of (Li/Na)2 binary carbonate exhibit the applicable properties as SOFC cathode material.