Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Herrero, Nuria

  • Google
  • 1
  • 6
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Influence of Tooling Material and Temperature on the Final Properties of Tailor Tempered Boron Steels3citations

Places of action

Chart of shared publication
Ortubay, Rafa
1 / 1 shared
Agirretxe, Xabier
1 / 1 shared
Intxaurbe, Jatsu
1 / 1 shared
Argandoña, Eneko Sáenz De
1 / 1 shared
Sukia, Aitor
1 / 1 shared
Galdos, Lander
1 / 3 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Ortubay, Rafa
  • Agirretxe, Xabier
  • Intxaurbe, Jatsu
  • Argandoña, Eneko Sáenz De
  • Sukia, Aitor
  • Galdos, Lander
OrganizationsLocationPeople

article

Influence of Tooling Material and Temperature on the Final Properties of Tailor Tempered Boron Steels

  • Ortubay, Rafa
  • Agirretxe, Xabier
  • Intxaurbe, Jatsu
  • Argandoña, Eneko Sáenz De
  • Herrero, Nuria
  • Sukia, Aitor
  • Galdos, Lander
Abstract

<jats:p>Hot forming processes are becoming a successful solution when complex geometrical components with high mechanical properties are desired. In fact, automotive structural components with tensile strengths higher than 1500MPa are being nowadays industrially produced. The technology is based on the forming and quenching of the sheet inside the forming tool using boron steels.Aiming at boosting the advantages of this technology, car manufacturers have started to demand structural components with different mechanical behavior areas in order to improve the impact response of the auto-motive passenger compartment: the so called tailor tempered components. The basic idea is to obtain final parts with different properties like it has been successfully done using tailored welded blanks. Although different solutions exist, one of the most common strategy is to use partially heated tooling, which influences the cooling of the sheet and consequently the local properties.At the present work, a special tooling with independent heated and cooled areas has been developed in order to evaluate the final properties achievable in the tailored tempering process. Furthermore, high and low conductivity alloys have been used to find the process limits. Hardness values, Ultimate Tensile Stresses and microstructures are shown for different steels, tool temperatures and contact pressures</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • strength
  • steel
  • hardness
  • Boron
  • forming
  • tensile strength
  • quenching
  • tempering
  • impact response