People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Soyarslan, Celal
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Additive manufacturing of NiTi architected metamaterialscitations
- 2023Functional performance of NiTi shape memory architected structures produced by laser powder bed fusion (LPBF)
- 2023Asymptotic homogenization in the determination of effective intrinsic magnetic properties of compositescitations
- 2022Asymptotic Homogenization in the Determination of Effective Intrinsic Magnetic Properties of Composites
- 2022Periodic Homogenization in Crystal Plasticity
- 20183D stochastic bicontinuous microstructures: generation, topology and elasticitycitations
- 2018A class of rate-independent lower-order gradient plasticity theoriescitations
- 2017Size affected dislocation activity in crystals : advanced surface and grain boundary conditions
- 2017Implementation and application of a gradient enhanced crystal plasticity modelcitations
- 2017Effect of surface elasticity on the elastic response of nanoporous gold
- 2016Structure-property relationships in nanoporous metallic glassescitations
- 2015Modeling of fracture in small punch tests for small- and large-scale yielding conditions at various temperatures
- 2015Elastic and plastic poisson’s ratios of nanoporous gold
- 2015Materials based design of structures: computational modeling of the mechanical behavior of gold-polymer nanocomposites
- 2014Finite element methodcitations
- 2014Formability assessment of advanced high strength steel sheets using (an)isotropic Lemaitre’s damage model
- 2014Inherent and induced anisotropic finite visco-plasticity with applications to the forming of DC06 sheetscitations
- 2014On the distortion of yield surface under complex loading paths in sheet metal forming
- 2013Anwendung der expliziten FEM in der Umformtechnik
- 2013Inverse identification of CDM model parameters for DP1000 steel sheets using a hybrid experimental-numerical methodology spanning various stress triaxiality ratioscitations
- 2011Analysis of formability of advanced high strength steel sheets with phenomenologically based failure criteria with separate treatment of instability, shear and normal fracture
- 2008Application of continuum damage mechanics in discontinuous crack formationcitations
Places of action
Organizations | Location | People |
---|
book
Inverse identification of CDM model parameters for DP1000 steel sheets using a hybrid experimental-numerical methodology spanning various stress triaxiality ratios
Abstract
International audience ; A hybrid experimental-numerical methodology is presented for the identification of the model parameters regarding a mixed hardening anisotropic finite plasticity fully coupled with isotropic ductile damage in which the micro-crack closure effect is given account for, for steel sheets made of DP1000. The experimental tests involve tensile tests with smooth and pre-notched specimens and shear tests with specimen morphologies recently proposed by D.R. Shouler, J.M. Allwood (Design and use of a novel sample design for formability testing in pure shear, Journal of Materials Processing Technology, Volume 210, Issue 10, 1 July 2010, Pages 1304-1313). These tests cover stress triaxiality ratios lying between 0 (pure shear) and 1/√3 (plane strain). To neutralize machine stiffness effects displacements of the chosen material surface pixels are kept track of using the digital image correlation system ARAMIS, where recorded inputs are synchronized with force measurements. On the numerical part, developed constitutive model is implemented as user defined material subroutine, VUMAT, for ABAQUS/Explicit. FE models for the test cases are built using 3D brick elements (rather than thin shells) and devising developed VUMAT for the constitutive model, model parameters are identified using an inverse parameter identification procedure where the objective function relies on the difference of experimentally observed-numerically predicted forces for the selected pixel displacements. The validity of the material model and transferability of its parameters are tested using tests involving complex strain paths.