People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bor, Teunis Cornelis
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2016Carbon Nanofibers Grown on Large Woven Cloths: Morphology and Properties of Growthcitations
- 2016Parameter Study for Friction Surface Cladding of AA1050 on AA2024-T351
- 2015Friction Surface Cladding of AA1050 on AA2024-T351; influence of clad layer thickness and tool rotation rate
- 2015Thermal and Flow Analysis of Friction Surface Cladding with Varying Clad Layer Thickness
- 2013Modeling of the Austenite-Martensite Transformation in Stainless and TRIP Steelscitations
- 2013Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of gamma-texturecitations
- 2013Cladding of Advanced Al Alloys Employing Friction Stir Weldingcitations
- 2012Free Surface Modeling of Contacting Solid Metal Flows Employing the ALE formulationcitations
- 2010Modeling of Stress Development During Thermal Damage Healing in Fiber-reinforced Composite Materials Containing Embedded Shape Memory Alloy Wirescitations
- 2008Damage healing in thermoplastic composite plates by employing shape memory alloy wires (on USB stick)
- 2008Ductile or brittle? The impact behaviour of uPVC upon ageing
- 2005Self healing structural components
Places of action
Organizations | Location | People |
---|
article
Cladding of Advanced Al Alloys Employing Friction Stir Welding
Abstract
In this paper an advanced solid state cladding process, based on Friction Stir Welding, is presented. The Friction Surface Cladding (FSC) technology enables the deposition of a solid-state coating using filler material on a substrate with good metallurgical bonding. A relatively soft AA1050 filler material is deposited on a relatively hard AA2024-T351 substrate and the results are discussed. Depending on the process conditions, the filler material is deposited on top of the substrate or mixed through the surface region of the substrate. The cladded surface regions are analyzed using SEM-EDX, optical microscopy and micro hardness measurements to identify the resulting microstructure and establish the degree of mixing.