People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sivaprasad, K.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2020Excellent Combination of Tensile ductility and strength due to nanotwinning and a biamodal structure in cryorolled austenitic stainless steelcitations
- 2018Direct Active Soldering of PEO Coated and Uncoated AA6061 Aluminium Alloy
- 2013Studies on Potentiodynamic Polarization Behaviour of Cryorolled Al-Mg-Si Alloycitations
- 2008Microstructure and mechanical properties of ultra fine grained Cu-Zn and Cu-Al alloys produced by cryorolling and annealingcitations
Places of action
Organizations | Location | People |
---|
article
Studies on Potentiodynamic Polarization Behaviour of Cryorolled Al-Mg-Si Alloy
Abstract
<jats:p>Cryorolling is considered to be the prominent processing method to develop high strength light weight alloys. Even though considerable work is available on mechanical properties of cryorolled materials, no detailed studies are available on corrosion behavior of these cryorolled sheets. Al-Mg-Si alloy is cryorolled to 50% and 75% reduction at -196°C and also at room temperature. Potentiodynamic polarization studies were performed on these rolled sheets in 3.5 wt% NaCl solution and the results were compared with those of the annealed and solutionized samples of Al-Mg-Si alloy. Irrespective of the rolling temperature, all the rolled samples, except for LNR 75%, exhibited inferior corrosion resistance compared with those of the reference samples. This is attributed to the large amount of internal stresses and sub-grain network developed during rolling. The rolled samples evidenced peak shift compared to those of the annealed and solutionized samples and higher peak broadening is observed, which is due to the development of higher grain boundary area and enhanced lattice strains along with large dislocation densities. These grain boundaries and dislocation densities are the root cause for the inferior corrosion properties of the rolled samples.</jats:p>