People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mata, H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2015Study of formability of sandwich shells with metal foam cores based on punch penetration test
- 2014Study on the forming of sandwich shells with closed-cell foam corescitations
- 2013STUDY OF FORMABILITY OF SANDWICH SHELLS WITH METAL FOAM COREScitations
- 2012Numerical Modelling and Experimental Study of Sandwich Shells with Metal Foam Corescitations
- 2012Numerical and experimental study of the bulge test of sandwich shells with metal foam cores
- 2011Modeling of Sandwich Sheets with Metallic Foamcitations
- 2011FEM analysis of Sandwich Shells with Metallic Foam Corescitations
- 2011Analysis of Sandwich Shells with Metallic Foam Cores based on the Uniaxial Tensile Testcitations
- 2011NUMERICAL AND EXPERIMENTAL STUDY OF SANDWICH PLATES WITH METALLIC FOAM CORES
- 2010STUDY OF SANDWICH SHELLS WITH METALLIC FOAM COREScitations
Places of action
Organizations | Location | People |
---|
document
FEM analysis of Sandwich Shells with Metallic Foam Cores
Abstract
Traffic-related accidents are a major threat to life in the European Union, plus all the associated social and economic costs, remain unacceptable. It is generally considered that the number of traffic-related accidents is an unacceptable high burden for Europe's society and economy. World-wide vehicles safety experts agree that significant further reductions in fatalities and injuries can be achieved as a result of the use of new energy absorbing materials. In this field, passive safety systems still have great potential to reduce fatalities and injuries, as in the case of using new lightweight energy-absorbing materials. The main goal of this project is the development and evaluation of an innovative system able to perform reliable panels of sandwich sheets with metallic foam cores for industrial applications, especially in automotive and aeronautical industries. In this work, we first made an approach to analyze sandwich shells with metal cores forms. To this end we used a numerical model based on the finite element method using commercial software ABAQUS.