Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Castro-Gomes, João

  • Google
  • 5
  • 4
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2020Preliminary Study of the Rheological and Mechanical Properties of Alkali-activated Concrete Based on Tungsten Mining Waste Mud1citations
  • 2020Evolution of durability and mechanical properties of ordinary portland cement concretes in sulphates attack1citations
  • 2012Influence of metakaoline on the chloride penetration performance of concretecitations
  • 2012Influence of metakaoline on the chloride penetration performance of concretecitations
  • 2011The Effect of Latex and Chitosan Biopolymer on Concrete Properties and Performance24citations

Places of action

Chart of shared publication
Ferreira, Rui Miguel
1 / 21 shared
Malheiro, Raphaele
2 / 2 shared
Costa, Pedro
2 / 36 shared
Ferreira, Miguel
1 / 11 shared
Chart of publication period
2020
2012
2011

Co-Authors (by relevance)

  • Ferreira, Rui Miguel
  • Malheiro, Raphaele
  • Costa, Pedro
  • Ferreira, Miguel
OrganizationsLocationPeople

article

The Effect of Latex and Chitosan Biopolymer on Concrete Properties and Performance

  • Castro-Gomes, João
Abstract

<jats:p>this paper presents the results of a study in which the combination of two polymeric additives in concrete with the intention of improving its mechanical and durability performance is analysed. The additives are a synthetic latex and a biopolymer – chitosan. An evaluation of the mechanical properties as well as the phases formed based on scanning electron microscopy (SEM) and X-ray diffraction (XRD) was performed. The concretes were prepared with each of the polymers separately, and the results were ordinary. However, when combined, the results show an interesting interaction improving the mechanical strengths of the concrete. Several concrete samples were prepared with 0 – 4 % of each polymer with 1 % increments. The mechanical properties were shown to be sensitive to the incorporation of polymers. The desired effect of the interaction between the biopolymer and the latex was observed, because the strengths increased when both additives were present, namely for the combination of 2 % of each polymer. SEM images revealed a heterogeneous distribution in the polymer cementitious matrix, mainly with regards to latex. The presence of well defined polymer fibers on a fracture surface of composites prepared with biopolymer (4 %) was observed, indicating that the fibre pullout and not fracture was the cause of failure, resulting from the poor adherence of the fibers in matrix. Composites prepared with both polymers revealed abundant formation of C-S-H and the absence of ettringite, explaining the improvement of mechanical properties. The presence of reticulated structures of C-S-H dispersed in the microstructure and involving the calcium hydroxide corroborates the results of mechanical properties, mainly for the percentages of 3 % of biopolymer and 1 % of latex.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • polymer
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • strength
  • composite
  • Calcium
  • durability