People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Koloor, Seyed Saeid Rahimian
Universität der Bundeswehr München
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Cumulative fretting fatigue damage model for steel wire ropescitations
- 2021Micro- and Nanocellulose in Polymer Composite Materials: A Review.citations
- 2019Nano-Level Damage Characterization of Graphene/Polymer Cohesive Interface under Tensile Separationcitations
- 2012Finite Element Analysis of Curvature Precast Polymer Panel for Temporary Support of Tunnelscitations
- 2012Effect of Strain Rate Upsetting Process on Mechanical Behaviour of Epoxy Polymercitations
- 2012Explicit Dynamic Simulation of High Density Polyethylene Beam under Flexural Loading Conditioncitations
- 2012Hyperelastic Analysis of High Density Polyethylene under Monotonic Compressive Loadcitations
- 2012Mode I Interlaminar Fracture Characterization of CFRP Composite Laminatescitations
- 2012Effect of Strain-Rate on Flexural Behavior of Composite Sandwich Panelcitations
- 2011Mechanics of Composite Delamination under Flexural Loadingcitations
Places of action
Organizations | Location | People |
---|
article
Mechanics of Composite Delamination under Flexural Loading
Abstract
<jats:p>The mechanics of interface delamination in CFRP composite laminates is examined using finite element method. For this purpose a 12-ply CFRP composite, with a total thickness of 2.4 mm and anti-symmetric ply sequence of [45/-45/45/0/-45/0/0/45/0/-45/45/-45] is simulated under three-point bend test setup. Each unidirectional composite lamina is treated as an equivalent elastic and orthotropic panel. Interface behavior is defined using damage, linear elastic constitutive model and employed to describe the initiation and progression of delamination during flexural loading. Complementary three-point bend test on CFRP composite specimen is performed at crosshead speed of 2 mm/min. The measured load-deflection response at mid-span location compares well with predicted values. Interface delamination accounts for up to 46.7 % reduction in flexural stiffness from the undamaged state. Delamination initiated at the center mid-span region for interfaces in the compressive laminates while edge delamination started in interfaces with tensile flexural stress in the laminates. Anti-symmetric distribution of the delaminated region is derived from the corresponding anti-symmetric ply sequence in the CFRP composite. The dissipation energy for edge delamination is greater than that for internal center delamination. In addition, delamination failure process in CFRP composite can be described by an exponential rate of fracture energy dissipation under monotonic three-point bend loading.</jats:p>