People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alam, Parvez
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023The influence of claw morphology on gripping efficiencycitations
- 2023Tensile Properties of 3D‐Projected 4‐Polytopes: A New Class of Mechanical Metamaterialcitations
- 2021Mixed-mode interlaminar fracture toughness of glass and carbon fibre powder epoxy composites—for design of wind and tidal turbine bladescitations
- 2021Mixed-Mode Interlaminar Fracture Toughness of Glass and Carbon Fibre Powder Epoxy Composites—For Design of Wind and Tidal Turbine Bladescitations
- 2013Impact of functionalised dispersing agents on the mechanical and viscoelastic properties of pigment coatingcitations
- 2013Bacterial cellulose–kaolin nanocomposites for application as biomedical wound healing materialscitations
- 2012DMTA investigation of solvents effects on viscoelastic properties of porous CaCO₃-SBR latex compositescitations
- 2012Fatigue life predictions of porous composite paper coatingscitations
- 2012Coupled spreading-fraction effects of polymer nano-binder on the network connectivity and tensile modulus of porous mineral coatingscitations
- 2011Fracture and plasticity in nano-porous particle-polymer compositescitations
- 2010Polymer chain pinning at interfaces in CaCO₃-SBR latex compositescitations
Places of action
Organizations | Location | People |
---|
article
Fracture and plasticity in nano-porous particle-polymer composites
Abstract
A fracture mechanics algorithm, used for continuum mechanics simulations of nano-porous particle-polymer composites, is described herein. The model comprises close to a thousand ceramic particles bound together by latex polymer. These packings are generated using probabilistic methods (Monte Carlo). Pore-space arises as a function of particle shape and position coupled to the concentration and distribution of latex. Since the bridges are the weakest links in the solid state continuum, an understanding of failure behaviour is paramount for the design and optimisation of these composites.The objective of this research is to statistically characterise adhesive failure at particle-latexinterfaces against cohesive failure within the latex bridges. Toachieve this, a novel numerical method was developed. This method solvesordinary differential equations for vectors of force and displacement in layers through the computational packing. The model includes a schemefor non-linear elastic behaviour that evolves into a plastic flowregime. The model moreover incorporates a routine for interfacialfailure between particulates and binder. Geometrical features such assolid state anfractuosity, bridge orientation, material fraction andcoordination numbers are calculated from the packing output.The number of bridges straining plastically within the packing is lower than those that fracture at the interface. Fracture and failure are both related to the particle-bindercoordination number. There is no evidence to suggest that decreasingthe contacting sizes of binder at interfaces as well as making themthinner will lead to more plastic failure and decrease fracture. Rather, both plastic failure and fracture increase as a function of decreased contacting sizes and bulkdiameters. The residual elastic modulus decreases exponentially as thenumber of broken connections increases.