People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baili, Maher
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Global-to-local simulation of the thermal history in the laser powder bed fusion process based on a multiscale finite element approachcitations
- 2020Experimental and numerical investigations of the heating influence on the Ti5553 titanium alloy machinabilitycitations
- 2015The relationship between the cutting speed, tool wear, and chip formation during Ti-5553 dry cuttingcitations
- 2011An Experimental Investigation of Hot Machining with Induction to Improve Ti-5553 Machinabilitycitations
- 2010Experimental characterization of behavior laws for titanium alloys: application to Ti5553citations
- 2009Behaviour laws comparison for titanium alloys machining: Application to Ti5553
Places of action
Organizations | Location | People |
---|
article
Experimental characterization of behavior laws for titanium alloys: application to Ti5553
Abstract
The aim of this paper is to study the machinability of a new titanium alloy: Ti-5AL-5Mo-5V-3CR used for the production of new landing gear. First, the physical and mechanical properties of this material will be presented. Second, we show the relationship between material properties and machinability. Third, the Ti5553 will be compared to Ti64. Unless Ti64 is α+β alloy group and Ti5553 is a metastable, we have chosen to compare these two materials. Ti64 is the most popular of titanium alloys and many works were been made on its machining. After, we have cited the Ti5553 properties and detailed the behavior laws. They are used in different ways: with or without thermal softening effect or without dynamic terms. The goal of the paper is to define the best cutting force model. So, different models are compared for two materials (steel and titanium alloy). To define the model, two methods exist that we have compared. The first is based on machining test; however the second is based on Hopkinson bar test. These methods allow us to obtain different ranges of strain rate, strain and temperature. This comparison will show the importance of a good range of strain rate, strain and temperature for behavior law, especially in titanium machining.