People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gibson, Iain
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2020Natural and Synthetic Hydroxyapatitescitations
- 2020Ceramics, Glasses, and Glass-Ceramicscitations
- 2011Synthesis of Bioceramic Compositions
- 2008Optimisation of the aqueous precipitation synthesis of silicatesubstituted hydroxyapatite
- 2008Optimisation of the aqueous precipitation synthesis of silicate-substituted hydroxyapatite
- 2007Comparison of Carbonate Hydroxyapatite with and without Sodium Co-Substitutioncitations
- 2007Synthesis of Novel High Silicate-Substituted Hydroxyapatite by Co-Substitution Mechanismscitations
- 2006The uptake of titanium ions by hydroxyapatite particles-structural changes and possible mechanismscitations
- 2005In vivo assessment of hydroxyapatite and silicate-substituted hydroxyapatite granules using an ovine defect model
- 2003Calcium phosphate coatings obtained by Nd : YAG laser cladding: Physicochemical and biologic propertiescitations
- 2003Comparison of sintering and mechanical properties of hydroxyapatite and silicon-substituted hydroxyapatite
- 2002Ferroelasticity and hysteresis in LaCoO3 based perovskites
- 2002Porous glass reinforced hydroxyapatite materials produced with different organic additivescitations
- 2002Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatitescitations
- 2002Characterisation of mono- and biphasic calcium phosphates granules
- 2002Effect of silicon substitution on the sintering and microstructure of hydroxyapatite
- 2001Production of calcium phosphate coatings on Ti6Al4V obtained by Nd : yttrium-aluminum-garnet laser cladding
- 2001Effect of chemical composition on hydrophobicity and zeta potential of plasma sprayed HA/CaO-P2O5 glass coatingscitations
- 2001Effect of powder characteristics on the sinterability of hydroxyapatite powderscitations
- 2001Calcining influence on the powder properties of hydroxyapatitecitations
- 2001Adsorption and release studies of sodium ampicillin from hydroxyapatite and glass-reinforced hydroxyapatite compositescitations
- 2001Particle size effects on apatite-wollastonite glass crystallisation
- 2000Influence of phase purity on the in vivo response to hydroxyapatite
Places of action
Organizations | Location | People |
---|
booksection
Synthesis of Novel High Silicate-Substituted Hydroxyapatite by Co-Substitution Mechanisms
Abstract
<p>Silicate substituted hydroxyapatite bioceramics have been shown to enhance bone repair in vivo compared to hydroxyapatite (HA), although the amount of silicate ions that can be substituted alone into the hydroxyapatite structure is limited to approximately 5.2 wt%, or 1.6 wt% Si. This study describes the substitution of greater levels of silicate ions via co-substitution of silicate ions with trivalent yttrium ions, without resulting in the formation of any secondary phases. This substitution mechanism involves a coupled Substitution of yttrium and silicate ions for calcium and phosphate ions, respectively, and enables a level of silicate substitution up to approximately 9 wt%. Two different substitution mechanisms result in subtle differences in the crystal structure. When the mechanism xY(3+) + XSiO44- was used, a small decrease in the a-axis, but no change in the c-axis, of the unit cell compared to HA was observed. In contrast, when the mechanism x/2 Y3+ + XSiO44- was used, a significant increase in the c-axis of the unit cell was observed, compared to HA. XRF analysis and FTIR spectroscopy Supported the proposed substitution mechanisms. These novel substitution mechanisms not only enable greater levels of'siticate-substitution in HA to be prepared, but also allow the production of compositions with the same level of silicate substitution, and with subtle differences in chernical structure.</p>