Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stephen, Jennifer A.

  • Google
  • 2
  • 3
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2007Comparison of Carbonate Hydroxyapatite with and without Sodium Co-Substitution10citations
  • 2007Synthesis of Novel High Silicate-Substituted Hydroxyapatite by Co-Substitution Mechanisms11citations

Places of action

Chart of shared publication
Gibson, Iain
2 / 23 shared
Pace, C.
1 / 2 shared
Skakle, Jan
2 / 11 shared
Chart of publication period
2007

Co-Authors (by relevance)

  • Gibson, Iain
  • Pace, C.
  • Skakle, Jan
OrganizationsLocationPeople

booksection

Comparison of Carbonate Hydroxyapatite with and without Sodium Co-Substitution

  • Gibson, Iain
  • Stephen, Jennifer A.
  • Pace, C.
  • Skakle, Jan
Abstract

<p>Carbonate hydroxyapatite (CHA) bioceramics can be synthesised to contain sodium ions as a co-substituted ion, or as sodium-free compositions. it is unclear, however, which composition would produce the optimum biological response. The aim of this study was to find a reliable method to produce sodium co-substituted and sodium-free CHA compositions that would have the same level of carbonate substitution, and to characterise the effects of the two different substitutions on the structure of the CHA samples. After sintering at 900 degrees C in a CO2 atmosphere, ail samples contained approximately equal amounts of carbonate groups on the A- and B-sites, as observed by FTIR. The sample produced with NaHCO3 and the sodium-free sample (CHA1) have comparable carbonate contents, whereas the sample produced with Na2CO3 contains significantly more carbonate, probably due to the excess sodium ions allowing more carbonate co-substitution. The sodium-free CHA sample, however, has significantly smaller unit cell parameters compared to both sodium co-substituted CHA samples, and also to HA. This characterisation of the samples shows that the sodium-free CHA sample (CHA1) and the sample produced with NaHCO3 would provide CHA compositions for biological testing with similar carbonate contents and distributions, but with structural differences due to the sodium substitution.</p>

Topics
  • impedance spectroscopy
  • Sodium
  • sintering