Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Etxeberria Lizarraga, Agustin

  • Google
  • 3
  • 8
  • 49

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2018Effect of combining cellulose nanocrystals and graphene nanoplatelets on the properties of poly(lactic acid) based films41citations
  • 2009Miscibility Enhancement in All-Polymer Nanocomposites Composed of Weakly-Charged Flexible Chains and Polar Nanoparticles6citations
  • 2008Homogenization of Mutually Immiscible Polymers Using Nanoscale Effects: A Theoretical Study2citations

Places of action

Chart of shared publication
Labidi, Jalel
1 / 14 shared
Rekondo, A.
1 / 2 shared
Grande, Hans-Jürgen
1 / 7 shared
Mocholi, V.
1 / 1 shared
Montes, Sarah
3 / 9 shared
Pomposo, Jose A.
2 / 4 shared
Grande, Hans J.
1 / 4 shared
Rodríguez, Javier
1 / 2 shared
Chart of publication period
2018
2009
2008

Co-Authors (by relevance)

  • Labidi, Jalel
  • Rekondo, A.
  • Grande, Hans-Jürgen
  • Mocholi, V.
  • Montes, Sarah
  • Pomposo, Jose A.
  • Grande, Hans J.
  • Rodríguez, Javier
OrganizationsLocationPeople

article

Miscibility Enhancement in All-Polymer Nanocomposites Composed of Weakly-Charged Flexible Chains and Polar Nanoparticles

  • Pomposo, Jose A.
  • Grande, Hans J.
  • Etxeberria Lizarraga, Agustin
  • Montes, Sarah
Abstract

We report the phase behavior of nanocomposites composed of weakly-charged flexible polymers and polar nanoparticles by extending a mean-field theory for all-polymer nanocomposites recently introduced (Journal of Nano Research 2 (2008) 105). Translational, nanoparticle-driven, electrostatic and enthalpic interaction effects are taken into account. Weakly-charged polymers are predicted to be miscible with polar nanoparticles about one order of magnitude larger (in radius) than conventional uncharged polymers, even in the presence of moderate unfavorable enthalpic interactions. The detrimental effect of addition of a low molecular weight monovalent 1-1 salt on nanocomposite miscibility is also evaluated.

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • phase
  • theory
  • molecular weight