People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Selberherr, Siegfried
TU Wien
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Spin Transfer Torque Evaluation Based on Coupled Spin and Charge Transport: A Finite Element Method Approach
- 2020Influence of Current Redistribution in Switching Models for Perpendicular STT-MRAMcitations
- 2016Enhancement of Electron Spin Relaxation Time in Thin SOI Films by Spin Injection Orientation and Uniaxial Stresscitations
- 2014Microstructural Impact on Electromigration: A TCAD Studycitations
- 2013Multiple Purpose Spin Transfer Torque Operated Devices
- 2013strain induced reduction of surface roughness dominated spin relaxation in mosfetscitations
- 2011perspectives of silicon for future spintronic applications from the peculiarities of the subband structure in thin films
- 2011Modeling Electromigration Lifetimes of Copper Interconnectscitations
- 2009valley splitting in thin silicon films from a two band k p model
- 2009The Effect of Microstructure on Electromigration-Induced Failure Developmentcitations
- 2009thickness dependence of the effective masses in a strained thin silicon filmcitations
- 2009Analysis of Electromigration in Dual-Damascene Interconnect Structures
- 2007Electromigration Modeling for Interconnect Structures in Microelectronics
Places of action
Organizations | Location | People |
---|
article
Enhancement of Electron Spin Relaxation Time in Thin SOI Films by Spin Injection Orientation and Uniaxial Stress
Abstract
<jats:p>The electron spin properties of semiconductors are of immense interest for their potential in spin-driven applications. Silicon is a perfect material for spintronics due to a long spin lifetime. Understanding the peculiarities of the subband structure and details of spin propagation in thin silicon films in the presence of the spin-orbit interaction is under scrutiny. We have performed simulations to obtain the surface roughness limited, acoustic-and optical-phonon mediated spin relaxation time, when the film is under shear strain. The degeneracy between the non-equivalent valleys is lifted by strain, which in turn subdues the dominating inter-valley relaxation components and increases the spin lifetime. We also elaborate on the injection orientation sensitive spin relaxation model and predict that the spin relaxation time is maximum, when the spin is injected in-plane, relative to the (001) oriented silicon film.</jats:p>