Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wierzbicka-Miernik, Anna

  • Google
  • 6
  • 29
  • 81

Polish Academy of Sciences

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023Antipathogenic copper coatings: electrodeposition process and microstructure analysis2citations
  • 2019Periodic Layer Formation during Multiphase Diffusion in Silicide Systems2citations
  • 2019Microstructural anisotropy, phase composition and magnetic properties of as-cast and annealed Ni-Mn-Ga-Co-Cu melt-spun ribbons7citations
  • 2019Microstructural origins of martensite stabilization in Ni49Co1Mn37.5Sn6.5In6 metamagnetic shape memory alloy9citations
  • 2017Microstructural and Phase Composition Differences Across the Interfaces in Al/Ti/Al Explosively Welded Clads25citations
  • 2017Formation of a quasicrystalline phase in Al–Mn base alloys cast at intermediate cooling rates36citations

Places of action

Chart of shared publication
Ozga, Piotr
1 / 2 shared
Misztela, Andrzej
1 / 1 shared
Janusz-Skuza, Marta
1 / 2 shared
Dyner, Marcin
1 / 3 shared
Bugajska, Monika
1 / 2 shared
Dyner, Aneta
1 / 2 shared
Bigos, Agnieszka
1 / 6 shared
Wojewoda-Budka, Joanna
4 / 6 shared
Kwiecien, Izabella
1 / 1 shared
Dutkiewicz, Jan
1 / 6 shared
Wójcik, Anna
1 / 9 shared
Sikora, Marcin
1 / 7 shared
Maziarz, Wojciech
2 / 18 shared
Brzoza, Agnieszka
1 / 1 shared
Kowalczyk, Maciej
2 / 30 shared
Czaja, Paweł
2 / 14 shared
Szczerba, Maciej
1 / 5 shared
Przewoźnik, Janusz
1 / 7 shared
Morgiel, Jerzy
1 / 23 shared
Fronczek, Dagmara Malgorzata
1 / 1 shared
Schell, Norbert
2 / 180 shared
Lopez, Gabriel Alejandro
1 / 1 shared
Szulc, Zygmunt
1 / 1 shared
Litynska-Dobrzynska, Lidia
1 / 2 shared
Chulist, Robert
1 / 23 shared
Rogal, Łukasz
1 / 6 shared
Stan-Głowińska, Katarzyna
1 / 4 shared
Góral, Anna
1 / 4 shared
Lityńska-Dobrzyńska, Lidia
1 / 4 shared
Chart of publication period
2023
2019
2017

Co-Authors (by relevance)

  • Ozga, Piotr
  • Misztela, Andrzej
  • Janusz-Skuza, Marta
  • Dyner, Marcin
  • Bugajska, Monika
  • Dyner, Aneta
  • Bigos, Agnieszka
  • Wojewoda-Budka, Joanna
  • Kwiecien, Izabella
  • Dutkiewicz, Jan
  • Wójcik, Anna
  • Sikora, Marcin
  • Maziarz, Wojciech
  • Brzoza, Agnieszka
  • Kowalczyk, Maciej
  • Czaja, Paweł
  • Szczerba, Maciej
  • Przewoźnik, Janusz
  • Morgiel, Jerzy
  • Fronczek, Dagmara Malgorzata
  • Schell, Norbert
  • Lopez, Gabriel Alejandro
  • Szulc, Zygmunt
  • Litynska-Dobrzynska, Lidia
  • Chulist, Robert
  • Rogal, Łukasz
  • Stan-Głowińska, Katarzyna
  • Góral, Anna
  • Lityńska-Dobrzyńska, Lidia
OrganizationsLocationPeople

booksection

Periodic Layer Formation during Multiphase Diffusion in Silicide Systems

  • Wierzbicka-Miernik, Anna
Abstract

<jats:p>Periodic layered morphology may occur during displacement solid-state reactions in ternary (and higher-order) silicide and other material systems. This periodic layered structure consists of regularly spaced layers (bands) of particles of one reaction product embedded in a matrix phase of another reaction product. The number of systems that is known to produce the periodic layered structure is rather small but increasing and includes metal/metal and metal/ceramic semi-infinite diffusion couples. The experimental results on different systems, where the periodic pattern formation has been observed are systematized and earlier explanations for this peculiar diffusion phenomenon are discussed. Formation of the reaction zone morphologies periodic in time and space can be considered as a manifestation of the Kirkendall effect accompanying interdiffusion in the solid state. The patterning during multiphase diffusion is attributed to diverging vacancy fluxes within the interaction zone. This can generate multiple Kirkendall planes, which by attracting <jats:italic>in situ</jats:italic>-formed inclusions of “secondary-formed phase” can result in a highly patterned microstructure.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • inclusion
  • phase
  • layered
  • ceramic
  • interdiffusion
  • vacancy
  • silicide