Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jassam, Taha Mohammed

  • Google
  • 3
  • 8
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Comparative Analysis of Gradient-Boosting Ensembles for Estimation of Compressive Strength of Quaternary Blend Concretecitations
  • 2020PLA/MMT-TiO<sub>2</sub> Bionanocomposites: Chemical Structure and Surface Wettability1citations
  • 2020Tensile and Morphology Properties of PLA/MMT-TiO<sub>2</sub> Bionanocomposites2citations

Places of action

Chart of shared publication
Alih, Sophia C.
1 / 2 shared
Ganiyu, Abideen
1 / 2 shared
Alateah, Ali
1 / 1 shared
Al-Tholaia, Mohammed
1 / 4 shared
Nabus, Hatem
1 / 2 shared
Sodani, Khaled A. Alawi Al
1 / 6 shared
Mustapha, Ismail B.
1 / 2 shared
Abdulkareem, Zainab
1 / 2 shared
Chart of publication period
2024
2020

Co-Authors (by relevance)

  • Alih, Sophia C.
  • Ganiyu, Abideen
  • Alateah, Ali
  • Al-Tholaia, Mohammed
  • Nabus, Hatem
  • Sodani, Khaled A. Alawi Al
  • Mustapha, Ismail B.
  • Abdulkareem, Zainab
OrganizationsLocationPeople

article

Tensile and Morphology Properties of PLA/MMT-TiO<sub>2</sub> Bionanocomposites

  • Jassam, Taha Mohammed
Abstract

<jats:p>The aim of this study is to produce PLA nanocomposites by solvent casting incorporating Montmorillonite nanoclays (MMT) and titanium dioxide (TiO2) nanoparticles. The effects of difference loadings of MMT in PLA and different loadings of TiO2 on mechanical and morphology properties were studied. The nanocomposites were prepared by solvent casting at different loadings of MMT (0, 2, 4, 6 and 8 wt %) and different loadings of TiO2 (1 and 3 wt %) respectively. The properties such as tensile properties (tensile strength, elongation at break, and modulus of elasticity) and morphology were determined. The results indicate that 4 wt% of MMT loading produced the best tensile properties. However, the incorporation of TiO2 showed an improvement in the modulus of elasticity of PLA/MMT nanocomposites mainly at 1 wt % loading of TiO2.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • strength
  • elasticity
  • solvent casting
  • casting
  • titanium
  • tensile strength