People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Luckabauer, Martin
University of Twente
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2025Simulating induction heating of fabric based thermoplastic composites using measured electrical conductivitiescitations
- 2024Post aging heat treatment effect on AA6060 produced by Friction Screw Extrusion Additive Manufacturing
- 2024The effect of the laser beam intensity profile in laser-based directed energy depositioncitations
- 2023Solid-State Additive Manufacturing of AA6060 Employing Friction Screw Extrusion Additive Manufacturingcitations
- 2023Melting-Free Metal Production: Solid-State Additive Manufacturing of an Al-Mg-Si Alloy Using FSEAM
- 2023The Influence of the Deposition Speed during Friction Screw Extrusion Additive Manufacturing of AA6060
- 2023Friction screw extrusion additive manufacturing of an Al-Mg-Si alloycitations
- 2023Determination of the anisotropic electrical conductivity of carbon fabric reinforced composites by the six-probe methodcitations
- 2023A Feasibility Study on Friction Screw Extrusion Additive Manufacturing of AA6060citations
- 2023Laser intensity profile as a means to steer microstructure of deposited tracks in Directed Energy Depositioncitations
- 2023Thermo-fluid modeling of influence of attenuated laser beam intensity profile on melt pool behavior in laser-assisted powder-based direct energy deposition
- 2022Thermo-fluidic behavior to solidification microstructure texture evolution during laser-assisted powder-based direct energy deposition
- 2022A feasibility study on friction screw extrusion additive manufacturing of AA6060
- 2020Evolution of microstructure and variations in mechanical properties accompanied with diffusionless isothermal ω transformation in β -titanium alloyscitations
- 2019Decreasing activation energy of fast relaxation processes in a metallic glass during agingcitations
- 2017In situ real-time monitoring of aging processes in an aluminum alloy by high-precision dilatometrycitations
- 2015Thermophysical properties of manganin (Cu86Mn12Ni2) in the solid and liquid statecitations
- 2014Specific volume study of a bulk metallic glass far below its calorimetrically determined glass transition temperaturecitations
- 2013Self- and solute diffusion, interdiffusion and thermal vacancies in the system iron-aluminiumcitations
Places of action
Organizations | Location | People |
---|
booksection
Self- and solute diffusion, interdiffusion and thermal vacancies in the system iron-aluminium
Abstract
<p>Starting from fundamental aspects of thermal vacancies and solid-state self- and solute diffusion, this paper reviews procedures for tracer- and interdiffusion studies and of the major techniques for vacancy studies by dilatometry and positron annihilation in metals. Equilibrium vacancy and diffusion studies performed on pure iron and aluminium are mentioned at first. We also comment some peculiarities of solute diffusion in aluminium. Positron annihilation and differential dilatometry studies for Fe-Al alloys with various compositions are summarized and new experimental studies by the authors are reported for vacancy migration in Fe<sub>61</sub>Al<sub>39</sub>. All these studies indicate a relatively high fraction of thermal vacancies with relatively low mobility in this type of iron-aluminides as compared to pure metals. Tracer diffusion of iron and of several substitutional solutes such as Co, Ni, Cr, Mn, Zn, and In in Fe-Al from the Münster laboratory are summarized. The diffusion studies of Fe-Al cover various alloy composition between Fe <sub>3</sub>Al and FeAl and several structures such as A2, B2 and D0 <sub>3</sub>. Interdiffusion coefficients obtained from diffusion couples between Fe-Al alloys are discussed together with Fe tracer diffusion data. The Darken-Manning equation is used to deduce Al diffusivities therefrom. The latter are hardly accessible to radiotracer experiments due to a lack of a suitable Al tracer. Diffusion of Al is slightly faster than diffusion of Fe indicating diffusion mechanisms with coupled jumps of Fe and Al atoms.</p>