People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Butterling, Maik
Helmholtz-Zentrum Dresden-Rossendorf
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Evolution of point defects in pulsed-laser-melted Ge<sub>1-x </sub>Sn <sub>x</sub> probed by positron annihilation lifetime spectroscopycitations
- 2024Controlling Magneto‐Ionics by Defect Engineering Through Light Ion Implantationcitations
- 2024Controlling Magneto-Ionics by Defect Engineering Through Light Ion Implantationcitations
- 2024Positron annihilation analysis of nanopores and growth mechanism of oblique angle evaporated TiO2 and SiO2 thin films and multilayers
- 2022Ion Intercalation in Lanthanum Strontium Ferrite for Aqueous Electrochemical Energy Storage Devicescitations
- 2022Defect Nanostructure and its Impact on Magnetism of α-Cr2O3 thin filmscitations
- 2022Flexomagnetism and vertically graded Néel temperature of antiferromagnetic Cr2O3 thin films
- 2022Unravelling the Origin of Ultra‐Low Conductivity in SrTiO$_3$ Thin Films: Sr Vacancies and Ti on A‐Sites Cause Fermi Level Pinningcitations
- 2022The impact of Mn nonstoichiometry on the oxygen mass transport properties of La Sr Mn O thin filmscitations
- 2022Interface effect of Fe and Fe<sub>2</sub>O<sub>3</sub> on the distributions of ion induced defectscitations
- 2022Strongly enhanced growth of high-temperature superconducting films on an advanced metallic templatecitations
- 2021Solution synthesis and dielectric properties of alumina thin films: understanding the role of the organic additive in film formationcitations
- 2021Mapping the structure of oxygen-doped wurtzite aluminum nitride coatings from ab initio random structure search and experimentscitations
- 2019Magnetic response of FeRh to static and dynamic disorder
- 2018Voltage-controlled ON−OFF ferromagnetism at room temperature in a single metal oxide filmcitations
- 2018Voltage-controlled ON-OFF ferromagnetism at room temperature in a single metal oxide filmcitations
- 2017New insights into the nanostructure of innovative thin film solar cells gained by positron annihilation spectroscopycitations
- 2012Investigation of Dual-Beam-Implanted Oxide-Dispersed-Strengthened FeCrAl Alloy by Positron Annihilation Spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Investigation of Dual-Beam-Implanted Oxide-Dispersed-Strengthened FeCrAl Alloy by Positron Annihilation Spectroscopy
Abstract
<jats:p>Oxide-dispersion-strengthened (ODS) FeCrAl steel is a class with promising materials to be applied for future nuclear applications. However, radiation damage, especially the formation of vacancy clusters or gas-filled bubbles, may result in hardness increase and the loss of ductility. Positron annihilation spectroscopy (PAS) is demonstrated to be a very useful and non-destructive analysis method to detect and to determine open volume defects of sub-nm size in ODS alloy. Synchronized dual beam implantation of Fe and He ions is performed to simulate the radiation damage caused by (n, α) reactions and to avoid induced activation. For room temperature implantation, i.e. without significant point defect recombination, the differences in the defect formation are shown by comparison between irradiation of ODS alloy and pure Fe bulk. The open volume defects created in ODS alloy are vacancy clusters closely connected with dispersed Y oxide nanoparticles. Their profiles are in reasonable qualitative agreement with the hardness profiles, indicating a relationship between sub-nm vacancy clusters or He bubbles and the hardness of the material. In heat-treated ODS alloy, containing larger vacancy clusters, the radiation induced hardness increase is more distinctive than for as-received ODS alloy. For irradiation at a moderately enhanced temperature of 300°C open volume defects are drastically reduced. The few remaining defects are vacancy clusters of the same type as in as-received ODS alloy. Close to the surface the open volume defects completely disappear. These results are in agreement with the hardness measurements showing little hardness increase in this case. The suitability of ODS-based materials for nuclear applications was verified.</jats:p>