People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oliveira, Msa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2013Shape memory polyurethanes reinforced with carbon nanotubescitations
- 2013The effect of carbon nanotubes on viscoelastic behaviour of biomedical grade ultra-high molecular weight polyethylenecitations
- 2011Enhanced UHMWPE Reinforced with MWCNT through Mechanical Ball-Millingcitations
- 2011The Use of Taguchi Technique to Optimize the Compression Moulding Cycle to Process Acetabular Cup Componentscitations
- 2011Performance of nanocrystalline diamond coated micromolding tools
- 2011Thermo-Mechanical Behaviour of Ultrahigh Molecular Weight Polyethylene-Carbon Nanotubes Composites under Different Cooling Techniquescitations
- 2010Tribological characterisation of carbon nanotubes/ultrahigh molecular weight polyethylene composites: the effect of sliding distancecitations
- 2010In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cellscitations
- 2009Tribology of biocompositescitations
- 2008Time-modulated chemical vapour deposition diamonf on mould making 2738 steelcitations
- 2008Dynamic Mechanical Analysis of Multi-Walled Carbon Nanotube/HDPE Compositescitations
- 2007Mechanical properties of high density polyethylene/carbon nanotube compositescitations
Places of action
Organizations | Location | People |
---|
document
Thermo-Mechanical Behaviour of Ultrahigh Molecular Weight Polyethylene-Carbon Nanotubes Composites under Different Cooling Techniques
Abstract
Ultrahigh molecular weight polyethylene (UHMWPE) is a unique polymer with outstanding physical and mechanical properties that makes it particularly attractive to fabricate the bearing surface for artificial joints. Despite the requirement of visco-elastic properties of the UHWMPE and its composites, the characterization of them has received relatively little attention. The objective of this work is concerned with the studies on visco-elastic behaviour of UHMWPE and nanocomposites, which were prepared at optimized ball milling time with different cooling techniques. It is observed that stiffness of the materials increases appreciably at 0.2wt.% CNTs with an increase of frequency till 30Hz which confirms the reinforcing effect of CNTs in composites. The loss modulus of the sample is observed to be converged at higher temperature irrespective of frequency. The damping effect of the sample could be kept within the limit of polymer at any frequency range when the temperature is low and it is also possible at any temperatures at higher frequencies except LN2 cooled sample. The relaxation fraction increases with an increase of temperature and decreases with an increase of frequency. It is concluded that air cooled sample could be used wherever modulus is the main criteria irrespective of temperature and frequency, LN2 cooled sample can be used where more damping is required and water cooled samples may be used where more strength and toughness are required.