People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Arnould, Olivier
University of Montpellier
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Thermal and energy analysis of DMTA testscitations
- 2023Non-destructive measurement of orthotropic elastic properties of wood samples by their modal impulse response
- 2021Influence of force volume indentation parameters and processing method in wood cell walls nanomechanical studiescitations
- 2021On the determination of the elastic constants of carbon fibres by nanoindentation testscitations
- 2020The Middle Lamella of Plant Fibers Used as Composite Reinforcement: Investigation by Atomic Force Microscopycitations
- 2020Vibrational measurement of shear modulus and damping of wood: An application of the Vybris-Torsion device
- 2019Effect of thermomechanical couplings on viscoelastic behaviour of polystyrene
- 2019Cell Wall Ultrastructure Modifications During Flax Fiber Retting
- 2018Caractérisation mécanique de la paroi cellulaire des fibres de lin par AFM : de la biomécanique aux effets des procédés de mise en forme des composites bio-sourcés
- 2018Viscous dissipation and thermo-mechanical coupling effect in the polymer
- 2018Effect of time and thermo-mechanical couplings on polymers
- 2017Flax fibres cell walls characterization by Peak-Force Quantitative Nano Mechanics technology
- 2016Characterisation of cubic oak specimens from the Vasa ship and recent wood by means of quasi-static loading and resonance ultrasound spectroscopy (RUS)citations
- 2015Characterisation of cubic oak specimens from the Vasa ship and recent wood by means of quasi-static loading and resonance ultrasound spectroscopy (RUS)citations
- 2012Experimental micromechanical characterization of wood cell walls
- 2012The effect of the G-layer on the viscoelastic properties of tropical hardwoodscitations
- 2010Enhanced multiple ultrasonic shear reflection method for the determination of high frequency viscoelastic propertiescitations
- 2009Mesoscale Analysis of dynamic loading and their physical consequences on a propellant: numerical and mechanical modelisations issues
- 2009The viscoelastic properties of some Guianese woods
- 2007Mechanical characterization of wood at the submicrometre scale: a prospective study
- 2006AFM characterization of the mechanical properties of wood at the cell wall level ; a prospective study
- 2004Thermomechanical properties and fatigue of nanocrystalline Ni/Cu electrodepositscitations
- 2004Prevalent material parameters governing spalling of a slag-impregnated refractory
- 2003Prevalent material parameters governing spalling of a slag-impregnated refractory
- 2002Long-Term Life of Ni/Cu Bellows: Effect of Diffusion on Thermomechanical Propertiescitations
Places of action
Organizations | Location | People |
---|
article
Long-Term Life of Ni/Cu Bellows: Effect of Diffusion on Thermomechanical Properties
Abstract
The aim of this paper is to discuss different couplings between diffusion, re- crystallisation/grain growth, strain/stress, heat transfer and thermo-mechanical behaviour of metallic materials. The understanding of these different physical phenomena is needed to predict the long-term life of mechanical parts in components. Some results are presented and further studies are suggested to improve the evaluation of the (inter)diffusion and re- crystallisation parameters in fine-grained electroplated Ni/Cu materials. To illustrate the coupling between elasticity and diffusion, classical results in homogenisation consistent with the main diffusion regime are used to predict the change in elastic moduli with time.