People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nayan, Nafarizal
Laboratoire Bourguignon des Matériaux et Procédés
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023Analysis of the Anticorrosion Performance and Antibacterial Efficacy of Ti-Based Ceramic Coatings for Biomedical Applicationscitations
- 2021Synthesis, characterization and biophysical evaluation of the 2D Ti2CTx MXene using 3D spheroid-type culturescitations
- 2019Effects of Laser Radiation on the Optical and Electrical Properties of ITO Thin Films Deposited by RF Sputteringcitations
- 2019Photochemical reduction of carbonyl group of polyimide by 450 nm diode laser
- 2018Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cellscitations
- 2018Difference in structural and chemical properties of sol–gel spin coated Al doped TiO2, Y doped TiO2 and Gd doped TiO2 based on trivalent dopantscitations
- 2017The influence of N2 flow rate on Ar and Ti Emission in high-pressure magnetron sputtering system plasmacitations
- 2016Sputter Deposition of Cuprous and Cupric Oxide Thin Films Monitored by Optical Emission Spectroscopy for Gas Sensing Applicationscitations
- 2016Correlation between Microstructure of Copper Oxide Thin Films and its Gas Sensing Performance at Room Temperaturecitations
- 2015Spectroscopic Studies of Magnetron Sputtering Plasma Discharge in Cu/O2/Ar Mixture for Copper Oxide Thin Film Fabricationcitations
- 2015Fabrication of inverted bulk heterojunction organic solar cells based on conjugated P3HT:PCBM using various thicknesses of ZnO buffer layercitations
- 2015Influence of TiO2 thin film annealing temperature on electrical properties synthesized by CVD technique
- 2014Glass etching for cost-effective microchannels fabricationcitations
- 2014Physical and optical studies on ZnO films by SOL-GELcitations
- 2014Fabrication and Characterisation of the Electrical and Physical Properties of the Mask Printed Graphite Paste Electrodes on Paper Substratescitations
- 2013Oxide semiconductors for solar to chemical energy conversion: nanotechnology approachcitations
- 2013Biophysical characteristics of cells cultured on cholesteryl ester liquid crystals.citations
- 2013Morphology, topography and thickness of copper oxide thin films deposited using magnetron sputtering techniquecitations
- 2012Characterization of TiAlBN nanocomposite coating deposited via radio frequency magnetron sputtering using single hot-pressed targetcitations
- 2012Plasma properties of RF magnetron sputtering system using Zn targetcitations
- 2012Sol-gel Synthesis of TiO 2 Thin Films from In-house Nano-TiO 2 Powder
- 2012Corrosion Behavior of AZ91 Mg-Alloy Coated with AlN and TiN in NaCl and Hank's Solutioncitations
- 2010Structural and Electrical Properties of TiO2 Thin Film Derived from Sol-gel Method using Titanium (IV) Butoxide
- 2010Optimization of RF magnetron sputtering plasma using Zn targetcitations
Places of action
Organizations | Location | People |
---|
article
Fabrication and Characterisation of the Electrical and Physical Properties of the Mask Printed Graphite Paste Electrodes on Paper Substrates
Abstract
Heavy metal contamination in waste water is a problem of paramount concern. Instant measurement of the degree of contamination is the long term aim of this work. This project proposed the fabrication of mask printed graphite paste electrodes based on natural graphite and micronized graphite powder which has potential for sensing heavy metal in water. The graphite paste were prepared by mixing paraffin oil and graphite powder at certain ratios and they were coated via a mask on a paper substrate using squeegee method. A two-probe station was used to characterize the I-V curve of the mask printed electrodes, in which the result was used for determining the resistivity of the graphite paste electrodes. A field emission scanning electron microscope (FE-SEM) and energy dispersive X-ray spectroscopy (EDS) was used to investigate the surface structure of the graphite paste electrode and determining the purity of the carbon in the electrode. The result shows that natural and micronized graphite paste electrode has a mean resistivity of 1.69 x 10-3 Ωm and 1.25 x 10-3 Ωm, respectively. The slight difference found in the conductivity of both electrodes is associated with the particle gap size, density and dimension of graphite electrodes which are associated with the percolation theory.