People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Agun, Linda
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2016Effects of Soaking Duration on the Properties of LSCF–SDCC for Low-Temperature SOFC
- 2016Ba- and La- strontium cobalt ferrite carbonate composite as cathode materials for low temperature SOFCcitations
- 2016Ba0.5Sr0.5Co0.8Fe0.2-SDC Carbonate Composite Cathode for Low-Temperature SOFCscitations
- 2015Influence of Ag on the Chemical and Thermal Compatibility of LSCF- SDCC for LT-SOFCcitations
- 2015Influence of Binary Carbonate on the Physical and Chemical Properties of Composite Cathode for Low-Temperature SOFCcitations
- 2014Durability and stability of LSCF composite cathode for intermediate-low temperature of solid oxide fuel cell (IT-LT SOFC): Short Reviewcitations
Places of action
Organizations | Location | People |
---|
article
Durability and stability of LSCF composite cathode for intermediate-low temperature of solid oxide fuel cell (IT-LT SOFC): Short Review
Abstract
Solid oxide fuel cell (SOFC) is well known as power and heat generation device which converts chemical energy directly from fuel into electricity. SOFC operate at high temperature becomes obstacle for SOFC which reducing ionic conductivity material of current electrolyte, reduce lifetime of cell components, high fabrication cost, limited durability and performance issues. This introduce to environment pollution and decrease the SOFC lifetime. The fabrication of durability and stability composite cathode are comprised from mixing of perovskite La0.6Sr0.4CO0.2Fe0.8 (LSCF) powders with nanoscale ionically conducting ceramic electrolyte materials, SDC-carbonate (SDCc) was overcome this problems. Powder preparation and composite cathode fabrication must consider which as main factors in the development of durability and stability of LSCF-SDCc composite cathode. Powders must in nanoscale to enhance the conductivity and decrease the interfacial polarization resistance and the composite cathode should in nanoporous morphology for achieve high power density over than 500 h and remarkable durability. Calcination also plays in important role and its operations will effects to the SOFC durability and performance. The necessary to prolong the lifetime and increase the SOFC performance has lead to development of durability and stability of SOFC. This paper reviews the durability and stability of the composite cathode and focus on the challenges in material technology.