People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rahman, Hamimah Abd.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2014Effects of Milling Techniques and Calcinations Temperature on the Composite Cathode Powder LSCF-SDC Carbonate
- 2014Durability and stability of LSCF composite cathode for intermediate-low temperature of solid oxide fuel cell (IT-LT SOFC): Short Reviewcitations
- 2013Influence of Calcination on the Properties of La0.6Sr0.4Co0.2Fe0.8O3-δ-Samarium Doped Ceria Carbonatecitations
- 2013Effects of Calcination Factors on the Composite Cathode Powder LSCF-SDC Carbonate by Using Dry Millingcitations
- 2013Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cellscitations
- 2012The Effect of Milling Speed and Calcination Temperature towards Composite Cathode LSCF-SDC Carbonatecitations
Places of action
Organizations | Location | People |
---|
article
Durability and stability of LSCF composite cathode for intermediate-low temperature of solid oxide fuel cell (IT-LT SOFC): Short Review
Abstract
Solid oxide fuel cell (SOFC) is well known as power and heat generation device which converts chemical energy directly from fuel into electricity. SOFC operate at high temperature becomes obstacle for SOFC which reducing ionic conductivity material of current electrolyte, reduce lifetime of cell components, high fabrication cost, limited durability and performance issues. This introduce to environment pollution and decrease the SOFC lifetime. The fabrication of durability and stability composite cathode are comprised from mixing of perovskite La0.6Sr0.4CO0.2Fe0.8 (LSCF) powders with nanoscale ionically conducting ceramic electrolyte materials, SDC-carbonate (SDCc) was overcome this problems. Powder preparation and composite cathode fabrication must consider which as main factors in the development of durability and stability of LSCF-SDCc composite cathode. Powders must in nanoscale to enhance the conductivity and decrease the interfacial polarization resistance and the composite cathode should in nanoporous morphology for achieve high power density over than 500 h and remarkable durability. Calcination also plays in important role and its operations will effects to the SOFC durability and performance. The necessary to prolong the lifetime and increase the SOFC performance has lead to development of durability and stability of SOFC. This paper reviews the durability and stability of the composite cathode and focus on the challenges in material technology.