Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singh, Dharmendra

  • Google
  • 2
  • 5
  • 92

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures80citations
  • 2012Microstructural Studies of Al 5083 Alloy Deformed through Cryorolling12citations

Places of action

Chart of shared publication
Mishra, Yogendra Kumar
1 / 53 shared
Agarwala, Vijaya
1 / 2 shared
Adelung, Rainer
1 / 120 shared
Modi, Gaurav
1 / 1 shared
Najim, Mohd
1 / 1 shared
Chart of publication period
2015
2012

Co-Authors (by relevance)

  • Mishra, Yogendra Kumar
  • Agarwala, Vijaya
  • Adelung, Rainer
  • Modi, Gaurav
  • Najim, Mohd
OrganizationsLocationPeople

article

Microstructural Studies of Al 5083 Alloy Deformed through Cryorolling

  • Singh, Dharmendra
Abstract

<jats:p>In the present work to investigate the effect of rolling at very low temperature on microstructure of Al 5083 alloy, it was subjected to rolling at room temperature and immediate quenching at liquid nitrogen temperature up to different strain levels. The microstructure of deformed material has been studied using Electron back scattered diffraction (EBSD) and Transmission electron microscopy (TEM) techniques. A homogeneous ultrafine grained microstructure of an average size of 300 nm with well defined grain boundaries could be achieved with an effective rolling strain of only 2.3 followed by short annealing at 300 °C for 6 min. The effect of second phase particles on grain refinement at different stains is discussed. It was observed that increased dislocation density due to effective suppression of dynamic recovery by immediate quenching in liquid nitrogen temperature after each successive rolling passes leads to increased stored energy which further leads to formation of homogeneous ultrafine grained microstructure after short annealing subsequently.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • grain
  • phase
  • Nitrogen
  • transmission electron microscopy
  • dislocation
  • annealing
  • electron backscatter diffraction
  • quenching