People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rahman, Hamimah Abd.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2014Effects of Milling Techniques and Calcinations Temperature on the Composite Cathode Powder LSCF-SDC Carbonate
- 2014Durability and stability of LSCF composite cathode for intermediate-low temperature of solid oxide fuel cell (IT-LT SOFC): Short Reviewcitations
- 2013Influence of Calcination on the Properties of La0.6Sr0.4Co0.2Fe0.8O3-δ-Samarium Doped Ceria Carbonatecitations
- 2013Effects of Calcination Factors on the Composite Cathode Powder LSCF-SDC Carbonate by Using Dry Millingcitations
- 2013Development of lanthanum strontium cobalt ferrite composite cathodes for intermediate- to low-temperature solid oxide fuel cellscitations
- 2012The Effect of Milling Speed and Calcination Temperature towards Composite Cathode LSCF-SDC Carbonatecitations
Places of action
Organizations | Location | People |
---|
article
The Effect of Milling Speed and Calcination Temperature towards Composite Cathode LSCF-SDC Carbonate
Abstract
The effects of milling speed and calcinations temperature towards La0.6Sr0.4CO0.2Fe0.8O3-δ-SDC carbonate (LSCF-SDC carbonate) composite cathodes were investigated. The preparation of samarium-doped ceria (SDC) carbonate was firstly done by milling the SDC nanopowder with carbonate using the high-energy ball milling (HEBM) in air at room temperature. The obtained SDC carbonate was then used to mill with composite powder of lanthanum strontium cobalt ferrite (LSCF) which is one of the promising materials for the cathode of solid oxide fuel cells (SOFC). The purpose of milling LSCF composite powder with SDC carbonate was to get new composite cathode for intermediate-to low-temperature solid oxide fuel cells (IT-TLSOFC). LSCF composite powder with SDC carbonate was milled using high-energy ball milling with milling speed of 150 rpm and 550 rpm and calcinations temperatures of 750°C, 800°C, 850°C and 900°C. Field emission scanning electron microscopy (FESEM) analysis revealed the presence of large particle resulting from the increasing of calcinations temperature. FESEM also shows the particle size decrease in size with the increasing of milling speed. Therefore, the speed of 550 rpm and temperature of 900°C were found to be the best milling speed and calcinations temperature in producing the composite cathode of LSCF-SDC carbonate.