Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sunhaji, K. A.

  • Google
  • 1
  • 9
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Optimizing Robotic Welding Parameter of Single Passed Butt Joint under Simultaneous Consideration of Multiple Response Using Multi Objective Taguchi Methodcitations

Places of action

Chart of shared publication
Lidam, Robert Ngendang A.
1 / 2 shared
Sulaiman, Shahar
1 / 1 shared
Rahim, Mohammad Ridzwan Abdul
1 / 2 shared
Amirul, R.
1 / 1 shared
Noasiah, M.
1 / 1 shared
Jaafar, Roseleena
1 / 1 shared
Redza, Mohd Ridhwan Mohammed
1 / 2 shared
Manurung, Yupiter H. P.
1 / 10 shared
Tham, Ghalib
1 / 1 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Lidam, Robert Ngendang A.
  • Sulaiman, Shahar
  • Rahim, Mohammad Ridzwan Abdul
  • Amirul, R.
  • Noasiah, M.
  • Jaafar, Roseleena
  • Redza, Mohd Ridhwan Mohammed
  • Manurung, Yupiter H. P.
  • Tham, Ghalib
OrganizationsLocationPeople

article

Optimizing Robotic Welding Parameter of Single Passed Butt Joint under Simultaneous Consideration of Multiple Response Using Multi Objective Taguchi Method

  • Lidam, Robert Ngendang A.
  • Sulaiman, Shahar
  • Rahim, Mohammad Ridzwan Abdul
  • Amirul, R.
  • Noasiah, M.
  • Sunhaji, K. A.
  • Jaafar, Roseleena
  • Redza, Mohd Ridhwan Mohammed
  • Manurung, Yupiter H. P.
  • Tham, Ghalib
Abstract

<jats:p>This paper presents an alternative method to optimize parameters on single V butt welding. The effect of single-passed welding parameters such as current, voltage, welding speed and width of weaving movement on major welding defects by using a one-sided clamping method was investigated. The optimum parameter values were analyzed using Multi Objective Taguchi Methods (MTM) which started with the application of the common Taguchi methods (L8) Orthogonal Array (OA) and Total Normalized Quality Loss (TNQL) followed by ANOVA under simultaneous consideration of response weighting factors. Further, the value was analyzed by employing Multi Signal to Noise Ratio (MSNR). For the experimental study, a robotic welding system ABB IRB 2400/16 with digital welding power source KEMPPI Pro Evolution ProMIG 540 MXE with shielding gas Argon 80% and Carbon Dioxide 20% were applied. The material used is low carbon steel with 4 mm plate thickness. Based on the verification test result, it is found out that MTM can be used as an alternative method to investigate the optimum value of single passed welding parameter with multiple quality features.</jats:p>

Topics
  • impedance spectroscopy
  • Carbon
  • steel
  • defect