People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Senthilkumar, V.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Thermal Adsorption and Corrosion Characteristic Study of Copper Hybrid Nanocomposite Synthesized by Powder Metallurgy Routecitations
- 2021EFFECTS OF PARTICLE SIZE AND SINTERING TEMPERATURE ON SUPERELASTICITY BEHAVIOR OF NiTi SHAPE MEMORY ALLOY USING NANOINDENTATIONcitations
- 2021Generative Design and Topology Optimization of Analysis and Repair Work of Industrial Robot Arm Manufactured Using Additive Manufacturing Technologycitations
- 2014Modelling and Analysis of Electrical Discharge Alloying through Taguchi Techniquecitations
- 2014Development of carbide intermetallic layer by electric discharge alloying on AISI-D2 tool steel and its wear resistancecitations
- 2012Mathematical Modeling of Machining Parameters in Electrical Discharge Machining with Cu-B<sub>4</sub>C Composite Electrodecitations
- 2012Prediction of flow stress during hot deformation of MA'ed hybrid aluminium nanocomposite employing artificial neural network and Arrhenius constitutive modelcitations
- 2011Constitutive Modeling for the Prediction of Peak Stress in Hot Deformation Processing of Al Alloy Based Nanocompositecitations
- 2008Influence of titanium carbide particles addition on the forging behaviour of powder metallurgy composite steelscitations
- 2007Some Aspects on Hot Forging Features of P/M Sintered High-Strength Titanium Carbide Composite Steel Preforms Under Different Stress State Conditionscitations
Places of action
Organizations | Location | People |
---|
article
Mathematical Modeling of Machining Parameters in Electrical Discharge Machining with Cu-B<sub>4</sub>C Composite Electrode
Abstract
<jats:p>Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze th<jats:sub>Subscript text</jats:sub>e effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.</jats:p>