People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lekatou, Angeliki G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Corrosion and Tensile Behavior of 304L Rebars under the Influence of a Concrete Additive and Migrating Corrosion Inhibitors
- 2023Simulating porcelain firing effect on the structure, corrosion and mechanical properties of Co–Cr–Mo dental alloy fabricated by soft millingcitations
- 2023Microstructure-Properties Characterization of Selective Laser Melted Biomedical Co-28Cr-6Mo Alloycitations
- 2022A Critical Review on Al-Co Alloys: Fabrication Routes, Microstructural Evolution and Propertiescitations
- 2022Electrochemical Behavior of Nickel Aluminide Coatings Produced by CAFSY Method in Aqueous NaCl Solutioncitations
- 2021Corrosion performance and degradation mechanism of a bi-metallic aluminum structure processed by wire-arc additive manufacturingcitations
- 2021Structural and Tribological Assessment of Biomedical 316 Stainless Steel Subjected to Pulsed-Plasma Surface Modification: Comparison of LPBF 3D Printing and Conventional Fabricationcitations
- 2020Electrochemical Behavior of Al–Al9Co2 Alloys in Sulfuric Acidcitations
- 2018Microstructure and surface degradation of Al reinforced by Al<sub>x</sub>W intermetallic compounds via different fabrication routescitations
- 2018Solid particle erosion response of aluminum reinforced with tungsten carbide nanoparticles and aluminide particlescitations
- 2018Accelerated corrosion performance of AISI 316L stainless steel concrete reinforcement used in restoration works of ancient monumentscitations
- 2017Effect of Wetting Agent and Carbide Volume Fraction on the Wear Response of Aluminum Matrix Composites Reinforced by WC Nanoparticles and Aluminide Particlescitations
- 2015Microstructure And Mechanical Properties Of Al-WC Compositescitations
- 2013Corrosion and environmental degradation of bonded composite repaircitations
- 2013Solidification observations and sliding wear behavior of cast TiC particulate-reinforced AlMgSi matrix compositescitations
- 2008Influence of Montmorillonite Clay on Structure and Properties of Sodium Borate Glasses
Places of action
Organizations | Location | People |
---|
article
Influence of Montmorillonite Clay on Structure and Properties of Sodium Borate Glasses
Abstract
<jats:p>In the light of environmental perspective, clay minerals attract special interest because of their capability to absorb and chemically stabilize heavy metals in their structure [1, 2]. The absolute suppression of heavy element leakage from clay structures to the environment, which is obviously a strict demand, can be achieved with clay vitrification. This work is related to the influence of the addition of (0-50 wt%) of montmorillonite to a borate glass with composition of 0.33Na2O-0.67B2O3 on its structure. This influence has been studied with Raman and FT-IR spectroscopies, Archimedean density measurements, chemical durability in 90°C water and finally by studying of the ultrasonically measured elastic properties, such as Young’s and shear modulus and Poisson’s ratio, of the resultant glasses. The experimental results showed that the glass structure is predominantly comprised from tetrahedral and trigonal borate units and silicon and/or aluminium tetrahedral units. The results of density and chemical durability are fairly well correlated with structure. Higher amounts of montmorillonite lead to glasses of higher mechanical strength and chemical durability.</jats:p>