People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Siemers, Carsten
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Titanium alloys with a high β stabilizer content – sample preparation strategies and micrographs
- 2023Nanostructured Ti-13Nb-13Zr alloy for implant application—material scientific, technological, and biological aspectscitations
- 2023Nanostructured Ti-13Nb-13Zr alloy for implant application - material scientific, technological, and biological aspectscitations
- 2023Laser powder bed fusion (LPBF) of commercially pure titanium and alloy development for the LPBF processcitations
- 2022Two novel titanium alloys for medical applications: Thermo-mechanical treatment, mechanical properties, and fracture analysiscitations
- 2022Deformation and Microstructure of Titanium Chips and Workpiececitations
- 2020Second-generation Titanium alloys Ti-15Mo and Ti-13Nb-13Zr: A Comparison of the Mechanical Properties for Implant Applicationscitations
- 2020Second-generation Titanium alloys Ti-15Mo and Ti-13Nb-13Zr: A Comparison of the Mechanical Properties for Implant Applicationscitations
- 2020Recent Developments in the Production, Application and Research of Titanium in Germany
- 2020Aluminum- and Vanadium-free Titanium Alloys for Medical Applicationscitations
- 2015Shear Melting and High Temperature Embrittlement: Theory and Application to Machining Titaniumcitations
- 2013Influence of Iron on the Size and Distribution of Metallic Lanthanum Particles in Free-Machining Titanium Alloys Ti 6Al 7Nb xFe 0.9Lacitations
- 2013Analysis of a free machining alpha + beta titanium alloy using conventional and ultrasonically assisted turningcitations
- 2011Tool Wear Mechanisms during Machining of Alloy 625citations
- 2010Influence of La-Content and Microstructure on the Corrosion Properties of a New Free Machining Titanium Alloycitations
Places of action
Organizations | Location | People |
---|
article
Tool Wear Mechanisms during Machining of Alloy 625
Abstract
<jats:p>Nickel-base superalloys like Alloy 625 are widely used in power generation applications due to their unique properties especially at elevated temperatures. During the related component manufacturing for gas turbines up to 50% of the material has to be removed by metal cutting operations like milling, turning or drilling. As a result of high strength and toughness the machinability of Alloy 625 is generally poor and only low cutting speeds can be used. High-speed cutting of Alloy 625 on the other hand gets more important in industry to reduce manufacturing times and thus production costs. The cutting speed represents one of the most important factors that have influences on the tool life. The aim of this study is the analyses of wear mechanisms occurring during machining of Alloy 625. Orthogonal cutting experiments have been performed and different process parameters have been varied in a wide range. New and worn tools have been investigated by stereo microscopy, optical microscopy and scanning electron microscopy. Energy-dispersive X-ray analyses were used for the investigation of chemical compositions of the tool's surface as well as the nature of reaction products formed during the cutting process. Wear mechanisms observed in the machining experiments included abrasion, fracture and tribochemical effects. Specific wear features appeared depending on the mechanical and thermal conditions generated in the wear zones.</jats:p>