Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ngo, Si-Huy

  • Google
  • 5
  • 4
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024A Modified Reactive Powder Concrete Made with Fly Ash and River Sand: An Assessment on Engineering Properties and Microstructurecitations
  • 2022Assessing the Effect of GGBFS Content on Mechanical and Durability Properties of High-Strength Mortars8citations
  • 2022Lightweight foamed concrete reinforced with different polypropylene fiber contents1citations
  • 2018Fresh and Hardened Properties of Concrete Produced with Different Particle Sizes of Coarse Aggregate1citations
  • 2018Recycling of Waste Limestone as Fine Aggregate for Conventional and Green Concretes1citations

Places of action

Chart of shared publication
Huynh, Trong-Phuoc
1 / 1 shared
Nguyen, Van-Dung
1 / 4 shared
Nguyen, Xuan-Hien
1 / 1 shared
Nguyen, Ngoc Tan
1 / 10 shared
Chart of publication period
2024
2022
2018

Co-Authors (by relevance)

  • Huynh, Trong-Phuoc
  • Nguyen, Van-Dung
  • Nguyen, Xuan-Hien
  • Nguyen, Ngoc Tan
OrganizationsLocationPeople

article

Fresh and Hardened Properties of Concrete Produced with Different Particle Sizes of Coarse Aggregate

  • Ngo, Si-Huy
Abstract

<jats:p>This paper investigates both fresh and hardened properties of concrete produced with different particle sizes of coarse aggregate (CA). The CAs with the maximum sizes (D<jats:sub>max</jats:sub>) of 25 mm, 19 mm, 15 mm, 12.5 mm, and 9.5 mm were used to produce concrete samples with a water-to-binder ratio of 0.4. The workability, fresh unit weight, compressive strength, and ultrasonic pulse velocity (UPV) of the concrete were tested. Additionally, some concrete samples were fully immersed in 5% sodium sulfate solution in order to assess the performance of the concrete under sulfate attack condition. The experimental results show that the workability of fresh concrete increased with increasing the particle size of CA used, while the particle size of CA insignificantly affected to the unit weight of fresh concrete mixtures. The concrete mixture produced with D<jats:sub>max</jats:sub> of 12.5 mm obtained the highest compressive strength and UPV values in comparison with those of other mixtures. This study also found that the compressive strength values of concrete samples that fully immersed in sulfate solution reduced about 15% as compared with those of the concrete samples cured in lime-saturated water. All of the concrete samples prepared for this investigation exhibited good durability performance with ultrasonic pulse velocity values of above 4300 m/s. Test results also indicated that the concrete properties can be enhanced if the CA sizes were appropriately selected.</jats:p>

Topics
  • strength
  • Sodium
  • ultrasonic
  • durability
  • lime